A RADICAL ALGEBRA WITHOUT DERIVATIONS
DONALD J. NEWMAN

Wermer and Singer [1] have shown that in a semi-simple commuta-
tive Banach algebra there exist no nontrivial derivations, a deriva-
tion being a bounded linear operator \(D \), taking the algebra into it-
self, with the additional property that

\[
D(u \cdot v) = u \cdot (Dv) + (Du) \cdot v.
\]

Wermer has conjectured the following converse: If a commutative
Banach algebra has no nontrivial derivations then it is semi-simple.
A weaker statement is: If a commutative Banach algebra is all
radical [i.e. \(x^n \rightarrow 0 \) for all \(x \)] then it has a nontrivial derivation.
In this note we show that even this weaker statement is false.
We choose a fixed sequence \(\lambda_n, n = 1, 2, \cdots \), of non-0 complex
numbers, and consider the following algebraic system \(S \).
The elements are those formal power series

\[
a(t) = \sum_{n=1}^{\infty} a_n t^n \text{ for which } \sum |a_n| |\lambda_n|^n < \infty.
\]

Addition, multiplication, and multiplication by scalars is as usual.
Consider now the following properties
A: \(|\lambda_n| \geq |\lambda_{n+1}|\), \(n = 1, 2, \cdots \),
B: \(\lambda_n \rightarrow 0\),
C: \(n^\epsilon |\lambda_{n+1}|^{n+1}/|\lambda_n|^n \rightarrow \infty\) for any fixed \(\epsilon > 0 \).
We prove the following lemmas:

Lemma 1. A \(\Rightarrow \) \(S \) is a Banach algebra under the norm \(||a|| = \sum |a_n| |\lambda_n|^n\).

Lemma 2. A and B \(\Rightarrow S \) is all radical.

Lemma 3. A and C \(\Rightarrow S \) has no nontrivial derivations.

Proof 1. Since \(S \), under this norm is isomorphic and isometric to
\(l^1 \) under the correspondence

\[
\sum_{n=1}^{\infty} a_n t^n \leftrightarrow \{ a_n(\lambda_n)^n \},
\]

\(S \) is clearly a Banach space. Also

Received by the editors November 5, 1958.
\[
\|ab\| = \left\| \sum_{n=2}^{\infty} \left(\sum_{m+k=n} a_m b_k \right) t^n \right\|
\]
\[
= \sum_{n=2}^{\infty} \left| \sum_{m+k=n} a_m b_k \right| \|\lambda_n\|^n
\]
\[
\leq \sum_{m,k} \|a_m\| \|b_k\| \|\lambda_{m+k}\|^m \|\lambda_{m+k}\|^k = \sum_{m,k} \|a_m\| \|b_k\| \|\lambda_m\|^m \|\lambda_k\|^k \quad \text{(by A.)}
\]
\[
= \|a\| \|b\|
\]
and so is a Banach algebra.

Proof 2. It is known that the radical \(R \) is a closed subalgebra. But now \(\|t^n\|^{1/n} = \|\lambda_n\| \) and by B this \(\to 0 \). \(\therefore t \in R \), by the algebraic closure of \(R \), \(P(t) \in R \), \(P \) any polynomial. \(\therefore \) by topological closure, all

\[
a(t) \in R \cdot \left[\|a(t) - (a_{1t} + \cdots + a_{Nt^N})\| = \sum_{n=N+1}^{\infty} |a_n| \|\lambda_n\|^n \to 0 \text{ with } N \right].
\]

Proof 3. Since, as in the above parenthetical remark, the polynomials are dense in \(S \) it suffices to prove that \(D(t) = 0 \) for \(D \) any derivation, for it would then follow that \(D(P(t)) = P'(t)Dt = 0 \) and so \(D(a(t)) = 0 \) or \(D \) is trivial.

Let

\[
D(t) = \sum_{m=1}^{\infty} c_m t^m.
\]

Then

\[
D(t^n) = n t^{n-1} D(t) = n \sum_{k=0}^{\infty} c_{k+1} t^{k+n}.
\]

\(\therefore \) for any fixed \(k = 0, 1, \cdots \)

\[
\|D(t^n)\| \geq n |c_{k+1}| |\lambda_{k+n}|^{k+n},
\]
on the other hand, \(D \) being bounded,

\[
\|D(t^n)\| \leq \|M\| t^n = M |\lambda_n|^{n},
\]

\(\therefore |c_{k+1}| \leq M |\lambda_n|^{n/n} |\lambda_{n+k}|^{n+k}. \)

Now as \(n \to \infty \) it follows from C that the right side \(\to 0 \), \(\therefore c_{k+1} = 0 \),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
this holding for each $k = 0, 1, \cdots$ it follows that $D(t) = 0$.

We now see that a counterexample to Wermer's conjecture is afforded us once we note that conditions A, B, C are not contradictory. This is clear, however, since e.g.

$$\lambda_n = \frac{1}{\log(n + 1)}$$

satisfies all three of them.

Reference

Massachusetts Institute of Technology and Brown University