Some conditions under which a homogeneous continuum is a simple closed curve
HTML articles powered by AMS MathViewer
- by C. E. Burgess
- Proc. Amer. Math. Soc. 10 (1959), 613-615
- DOI: https://doi.org/10.1090/S0002-9939-1959-0107854-3
- PDF | Request permission
References
- R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729–742. MR 27144
- R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), 171–192. MR 100823, DOI 10.1090/S0002-9947-1959-0100823-3
- C. E. Burgess, Continua and various types of homogeneity, Trans. Amer. Math. Soc. 88 (1958), 366–374. MR 95459, DOI 10.1090/S0002-9947-1958-0095459-6
- F. Burton Jones, Certain homogeneous unicoherent indecomposable continua, Proc. Amer. Math. Soc. 2 (1951), 855–859. MR 45372, DOI 10.1090/S0002-9939-1951-0045372-4
- F. Burton Jones, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc. 6 (1955), 735–740. MR 71761, DOI 10.1090/S0002-9939-1955-0071761-1 B. Knaster and C. Kuratowski, Problème 2, Fund. Math. vol. 1 (1920) p. 223. Stefan Mazurkiewicz, Sur les points accessibles des continus indécomposables, Fund. Math. vol. 14 (1929) pp. 107-115.
- Leo Zippin, A study of continuous curves and their relation to the Janiszewski-Mullikin theorem, Trans. Amer. Math. Soc. 31 (1929), no. 4, 744–770. MR 1501509, DOI 10.1090/S0002-9947-1929-1501509-1
Bibliographic Information
- © Copyright 1959 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 10 (1959), 613-615
- MSC: Primary 54.00
- DOI: https://doi.org/10.1090/S0002-9939-1959-0107854-3
- MathSciNet review: 0107854