DIFFEOMORPHISMS OF THE 2-SPHERE

STEPHEN SMALE¹

The object of this paper is to prove the theorem.

THEOREM A. The space Ω of all orientation preserving C^{∞} diffeomorphisms of S^2 has as a strong deformation retract the rotation group SO(3).

Here S^2 is the unit sphere in Euclidean 3-space, the topology on Ω is the C^r topology $\infty \ge r > 1$ (see [4]) and a diffeomorphism is a differentiable homeomorphism with differentiable inverse.

The method of proof uses

THEOREM B. The space $\mathfrak{F}(C^r \text{ topology})$ of C^{∞} diffeomorphisms of the unit square which are the identity in some neighborhood of the boundary is contractible to a point.

The analogue of Theorem A for the topological case was proved by H. Kneser [2]. The problem in his case seems to be of a different nature from the differentiable case. J. Munkres [3] has proved that Ω is arcwise connected.

Conversations with R. Palais have been helpful in the preparation of this paper.

Let I^2 be the square in the Euclidean plane E^2 with coordinate (t, x) such that $(t, x) \in I^2$ if $0 \le t \le 1$ and $0 \le x \le 1$. Let $\bar{e}: I^2 \to I^2$ denote the identity diffeomorphism and \mathfrak{F} , the space of diffeomorphisms, with the C^r topology, of I^2 onto I^2 which agree with \bar{e} on some neighborhood of \dot{I}^2 , the boundary of I^2 . The C^r topology is such that two maps are close with respect to it if they are close and their first r derivatives are close. See R. Thom [4] for details. We assume that r is fixed in this paper, $\infty \ge r > 1$, and that all function spaces considered possess the C^r topology. We further assume that all diffeomorphisms are C^{∞} .

Let $I_1 \subset I^2$ denote the subset $\{(t, x) \in I^2 | t=1\}$, df_p be the differential of a diffeomorphism f at p, and u_0 be the vector (1, 0) in E^2 considered as its own tangent vector space. Then denote by \mathcal{E} the space of diffeomorphisms of I^2 onto I^2 such that if $f \in \mathcal{E}$, then (a) $f = \overline{e}$ on some neighborhood of $\dot{I}^2 - I_1$, and (b) $df_p(u_0) = u_0$ for all p in some neighborhood of I_1 .

Received by the editors September 29, 1958.

¹ The work on this paper was supported in part by a National Science Foundation Postdoctoral Fellowship.

Let $\bar{e}_0: I^2 \rightarrow u_0$ be the constant map and define S to be the space with the compact open topology of maps of I^2 into S which agree with \bar{e}_0 in some neighborhood of \dot{I}^2 , where $S = E^2 - (0, 0)$.

A map $\phi: \mathcal{E} \rightarrow \mathcal{S}$ is defined as follows:

$$\phi(f)(t, x) = df_{f^{-1}(t,x)}(u_0), \qquad f \in \mathcal{E}.$$

LEMMA 1. There is a homotopy $\phi_v: \mathcal{E} \to \mathcal{S}$ such that for each $f \in \mathcal{E}$, (a) $\phi_v(f)(t, x)$ is C^{∞} in (v, x, t), (b) $\phi_0(f) = \bar{e}_0$,

(c)
$$\phi_1 = \phi$$
, and

(d) $\phi_v(\bar{e}) = \bar{e}_0$.

PROOF. Let $p: R \to S$ be the covering map where R is the universal covering space of S, and let $\bar{u} \in p^{-1}(u_0)$. Let $T_v: R \to R$ be a differentiable contraction of R to \bar{u} .

Define now a homotopy $h_v: S \to S$ by $h_v(f)(x) = pT_v(\bar{f}(x))$ where \bar{f} is the unique lifting of f taking \dot{I}^2 into \bar{u} . Then it is easily checked that $\phi_v = h_v \circ \phi$ may be taken as our desired homopy.

LEMMA 2. There is a homotopy $H_v: \mathcal{E} \to \mathcal{E}$ such that for each $f \in \mathcal{E}$,

- (a) $H_v(f)$ is C^{∞} in (v, x, t),
- (b) $H_0(f) = \bar{e}$,
- (c) $H_1(f) = f$, and
- (d) $H_v(\bar{e}) = \bar{e}$.

PROOF. Let $\phi_v(f)(t, x)$ be considered as a vector field on I^2 as given by Lemma 1, for each $f \in \mathcal{E}$ and $v \in I$, I the unit interval. Let $P_v(f)(u, t_0, x_0)$ be the integral curve of $\phi_v(f)$ with the initial condition $P_v(f)(0, t_0, x_0) = (t_0, x_0)$.

Define $Q_v(f)(t, x) = P_v(f)(t, 0, x)$.

Now suppose there were an integral curve $P_v(f)(u, t_0, x_0)$ starting at $(t_0, x_0) = (0, x)$ which did not leave I^2 . If this were so then it would approach asymptotically some simple closed curve in I^2 . In the interior of this curve the vector field $\phi_v(f)$ would have to have a singularity. But this is impossible. Thus we conclude that there is a t, say \bar{t} , with $Q_v(f)(\bar{t}, x)$ meeting I_1 . This is exactly the part of the proof of Theorem A which does not extend to the case of S^n .

Denote the above \overline{i} by $\overline{i}(v, f, x)$. Then $\overline{i}(v, f, x)$ is C^{∞} in (v, x) continuous (v, f, x) and positive.

We need the following lemma which can be found for example in [1, p. 172].

LEMMA 3. Let g be a real lower semi-continuous positive function on a paracompact space X. Then there is a real continuous function h on X such that for all $x \in X$, 0 < h(x) < g(x).

Let g be the function on & defined by

$$g(f) = \min \left\{ \frac{\bar{t}(v, f, x)}{1 - \bar{t}(v, f, x)}, 1 \, \middle| \, v, x \in I, \, \bar{t}(v, f, x) < 1 \right\}.$$

Then let η be the function on \mathcal{E} given by Lemma 3.

Let γ be a real function on $\mathcal{E} \times R$, C^{∞} in t such that $\gamma(f, t) = 0$ for t in some neighborhood of 0, $\gamma(f, t) = 1$ for t in some neighborhood of 1 and

$$0 < \frac{d\gamma(f,t)}{dt} < 1 + \eta(f).$$

We leave to the reader the task of showing that such a function exists.

Now define $H_v: \mathcal{E} \to \mathcal{E}$ by

$$H_{v}(f)(t, x) = Q_{v}(f)(t + \gamma(f, t)(\overline{t}(v, f, x) - 1), x).$$

We prove now that $H_{\nu}(f): I^2 \rightarrow I^2$ is regular (has Jacobian of rank 2). Note that $H_{\nu}(f)$ can be written as the composition $\psi \circ g$ where

$$g: (t, x) \to (t + \gamma(f, t)(\bar{t}(v, f, x) - 1), x) = (t', x'),$$

$$\psi: (t', x') \to Q_v(f)(t', x').$$

From the choice of η it follows that $\partial t' / \partial t \neq 0$, and hence g is regular.

Now we prove that ψ is regular. Let

$$\varphi(u, t, x) = P_{\nu}(f)(u, t, x)$$
 and $\varphi^{i}(u, t, x)$, $i = 1, 2$

be the coordinates of φ . Also let X(t, x) denote the vector field $\phi_v(f)$ with

$$X(t, x) = X_1(t, x) \frac{\partial}{\partial t} + X_2(t, x) \frac{\partial}{\partial x}$$

Then $\psi(t, x) = \varphi(t, 0, x)$. It is sufficient to prove ψ^{-1} is differentiable. Let $\tau(t, x)$ be the unique u such that $\varphi^{1}(u, t, x) = 0$. Then $\psi^{-1}(t, x) = (-\tau(t, x), \varphi^{1}(\tau(t, x), t, x), \varphi^{2}(\tau(t, x), t, x))$. The map ψ^{-1} is differentiable if τ is and τ is differentiable if

$$\frac{\partial \varphi^1(u,t,x)}{\partial u}\bigg|_{u=r(t,x)}\neq 0.$$

But

$$\frac{\partial \varphi^1(u,t,x)}{\partial u}\bigg|_{u=\tau(t,x)} = X_1(\varphi(\tau(t,x),t,x)) = X_1(0,\varphi^2) = 1.$$

1959]

It is easy now to check that H_v is our required homotopy. The following amplifies Theorem B.

THEOREM 4. The space \mathfrak{F} is contractible. In fact there is a homotopy $G_v: \mathfrak{F} \rightarrow \mathfrak{F}$ such that for each $f \in \mathfrak{F}$,

(a) G_v(f)(x, t) is C[∞] in (v, x, t),
(b) G₀(f) = ē,
(c) G₁(f) = f, and
(d) G_v(ē) = ē.

PROOF. Let \mathfrak{F}_1 be the space of diffeomorphisms of I into I which agree with the identity in some neighborhood of the boundary \dot{I} . Let $K_v: \mathfrak{F}_1 \rightarrow \mathfrak{F}_1$ be defined by $K_v(f)(t) = f(t)v + t(1-v)$. Then $K_v(f)(t)$ is C^{∞} in $(t, v), K_0(f)(t) = t, K_1(f) = f$, and if e is the identity $K_v(e) = e$.

Let H_v be as in Lemma 2, and define $h_v = H_v(h)$ for each $h \in \mathcal{E}$. Let \bar{h}_v denote h_v restricted to I_1 . Let $\beta(t)$ be a C^{∞} function of t such that $\beta(t) = 0$ in a neighborhood of 0, $\beta(t) = 0$ in a neighborhood of 1.

The desired homotopy $G_v: \mathfrak{F} \rightarrow \mathfrak{F}$ is defined as follows.

$$G_{v}(h)(t, x) = (t', [K_{\beta(t')}(\bar{h}_{v}^{-1})](x'))$$

where t' and x' are the t and x components respectively of $h_v(t, x)$. The map $(t, x) \rightarrow (t', x')$ is a diffeomorphism because h_v is. It is easily checked that

$$(t', x') \to (t', [K_{\beta(t')}(\bar{h}_v^{-1})](x'))$$

is a diffeomorphism. Hence the composition $G_v(h)$ is also a diffeomorphism. One can further check that $G_v(h)$ satisfies all the properties demanded by the theorem.

Let S^2 be the unit sphere in E^3 with Cartesian coordinates (x, y, z)and x_0 the South Pole. Let e_1 , e_2 be unit tangent vectors of S^2 at x_0 in the directions of the x and y axes respectively. Let Ω_0 be the space of diffeomorphisms of S^2 such that if $f \in \Omega_0$ then $f(x_0) = x_0$ and $df_{x_0}(e_i)$ $= e_i$, i = 1, 2.

THEOREM 5. The space Ω_0 is contractible in the sense of Theorem 4.

PROOF. Let E be the open southern hemisphere of S^2 . Then E^3 induces a natural Euclidean coordinate system on E and the tangent bundle T of E. We will use these coordinates to add points on E and T.

Let $g: \Omega_0 \rightarrow R$ be defined by

 $g(f) = \sup \left\{ q \leq 1 \mid \text{ for all } X \in T(N_q(x_0)), \mid df(X) - X \mid < 1 \right\}$

where $T(N_q(x_0))$ is the unit tangent bundle of $N_q(x_0)$. Then g is

lower semi-continuous. Hence by Lemma 3 let ϵ be a positive continuous function on Ω_0 such that |df(X) - X| < 1 for $X \in T(N_{\epsilon(f)}(x_0))$ and $f \in \Omega_0$.

Let γ be a function on $\Omega_0 \times S^2$, with $\gamma(f, x) \subset C^{\infty}$ for each f and such that $\gamma(f, x) = 1$ for $x \in N_{\epsilon(f)/2}(x_0)$ and $\gamma(f, x) = 0$ for x in the complement of $N_{\epsilon(f)}(x_0)$.

Define $S_v: \Omega_0 \rightarrow \Omega_0$ by

$$S_{v}(f)(x) = (1 - v)f(x) + v[\gamma(f, x)x + (1 - \gamma(f, x))f(x)].$$

Then $S_0(f) = f$ and $S_1(f)$ agrees with the identity on $N_{\epsilon(f)/2}(x_0)$.

Let $p: S^2 - x_0 \rightarrow E^2$ be stereographic projection using x_0 as pole with E^2 being the x - y plane of E^3 . Let I_M^2 denote the square in E^2 with center (0, 0) and with sides of length M which are parallel to the axes. Let $D_M: I_M^2 \rightarrow I_1^2$ be the obvious canonical diffeomorphism onto.

Let M be a positive continuous function on Ω_0 such that $p^{-1}(\text{exterior } I^2_{M(f)}) \subset N_{\epsilon(f)/2}(x_0)$. Let \mathfrak{F} be the space of diffeomorphisms of E^2 which are the identity in a neighborhood of I^2_1 and outside I^2_1 . Then let $G_v: \mathfrak{F} \to \mathfrak{F}$ be as in Theorem 4. Let a homotopy $F_v: \Omega_0 \to \Omega_0$ be defined by

$$\begin{split} F_{v}(f)(x) &= b^{-1} [G_{v}(bfb^{-1})] b(x), \quad b = D_{M} p, \quad x \in N_{\epsilon(f)/2}(x_{0}), \\ F_{v}(f)(x) &= f(x) \quad x \in N_{\epsilon(f)/2}(x_{0}). \end{split}$$

Let $\beta(v)$ be a C^{∞} function which is 0 in a neighborhood of 0 and 1 in a neighborhood of 1/2. Let $\gamma(v)$ be a C^{∞} function which is 0 in a neighborhood of 1/2 and 1 in a neighborhood of 1. Then we define our desired contraction $T_v: \Omega_0 \rightarrow \Omega_0$ by

$$T_{v} = S_{\beta(v)} \qquad 0 \leq v \leq 1/2,$$

$$T_{v} = F_{\gamma(v)} \qquad 1/2 \leq v \leq 1.$$

The following amplifies Theorem A.

THEOREM 6. The space Ω of all orientation preserving diffeomorphisms of S^2 has as a deformation retract the rotation group SO(3). In fact there is a homotopy $H_v: \Omega \rightarrow \Omega$ such that for each $f \in \Omega$

- (a) $H_v(f)(x)$ is C^{∞} in (v, x),
- (b) $H_0(f) = f$,
- (c) $H_1(f)$ is a rotation of S^2 , and
- (d) if $f \in SO(3)$, $H_v(f) = f$.

PROOF. Define $\overline{\Omega}$ as the subspace of Ω with the property that for $f \in \overline{\Omega}$, $e^1(f) = df_{x_0}(e_1)$ and $e^2(f) = df_{x_0}(e_2)$ are orthonormal. We first show that $\overline{\Omega}$ is a deformation retract of Ω .

If $f \in \Omega$, let v_0 be the unit vector perpendicular to $e^1(f)$ in $S_{f(x_0)}$ the

tangent space of S^2 at $f(x_0)$, and u_0 be $e^1(f)$ normalized. Then define

$$e_{t}^{1}(f) = (1 - t)e^{1}(f) + tu_{0},$$

$$e_{t}^{2}(f) = (1 - t)e^{2}(f) + tv_{0}$$

Let g_t be the linear transformation which sends $(e^1(f), e^2(f))$ into $(e_t^1(f), e_t^2(f))$. Let $p: S^2 \rightarrow S_{f(x_0)}$ be the natural projection. By Lemma 3, choose a positive continuous function ϵ on Ω with $\epsilon(f) < 1$, such that for a unit tangent vector X in the tangent space of $N_{\epsilon(f)}(f(x_0))$, $d(p^{-1}g_tp)(X)$ and X are independent.

Let γ be a function on $\Omega \times S^2$ such that for each $f \in \Omega$, $\gamma(f, x)$ is C^{∞} , is zero outside $N_{\epsilon(f)}(f(x_0))$ and is 1 on $N_{\epsilon(f)/2}(f(x_0))$. Let p induce an affine structure on the hemisphere of S^2 with center $f(x_0)$. Define $G_{p}: \Omega \to \Omega$ by

$$G_v(f)(x) = \gamma(f, x)p^{-1}g_vp(x) + (1 - \gamma(f, x))x$$

Then G_v retracts Ω onto Ω .

We now define a retraction of $\overline{\Omega}$ onto SO(3). For each $f \in \overline{\Omega}$ let $\alpha(f) \in SO(3)$ be the rotation sending $(f(x_0), df(e_1), df(e_2))$ into (x_0, e_1, e_2) . Then define $K_v: \overline{\Omega} \to \overline{\Omega}$ by $K_v(f) = T_v(f \circ \alpha(f))\alpha(f)^{-1}$ where T_v is as in Theorem 5.

The desired homotopy $H_v: \Omega \rightarrow \Omega$ is obtained by composing G_v and K_v as in the proof of the previous theorem.

References

1. J. L. Kelley, General topology, New York, 1955.

2. H. Kneser, Die Deformationssätze der einfach zusammenhängenden Flacher, Math. Z. vol. 25 (1926) pp. 362-372.

3. J. Munkres, Differentiable isotopies on the two-sphere, Abstract 548-137, Notices Amer. Math. Soc. vol. 5 (1958) p. 582.

4. R. Thom, Les singularites das applications differentiables, Ann. Inst. Fourier, Grenoble vol. 6 (1956) pp. 43-87.

INSTITUTE FOR ADVANCED STUDY