ON INEQUALITIES WITH ALTERNATING SIGNS

RICHARD BELLMAN

1. Introduction. In a recent paper, Olkin [2], established the following result.

Theorem 1. Let

(a) \(a_1 \geq a_2 \geq \cdots \geq a_m \geq 0, \)

(b) \(1 \geq w_1 \geq w_2 \geq \cdots w_m \geq 0, \)

(c) \(h(x) \) be convex in \([0, a_1], h(0) \leq 0.\)

Then

\[\sum_{j=1}^{m} (-1)^{i-1} w_j h(a_j) \geq h \left(\sum_{j=1}^{m} (-1)^{i-1} w_j a_j \right). \]

This is an extension of the result given in [1], which in turn is an extension of the original result of Weinberger, [4]. The purpose of this paper is to show that Olkin’s result is a special case of an interesting inequality due to Steffensen, [3].

2. Steffensen’s inequality. The result of Steffensen is the following.

Theorem 2. Let

(a) \(f(t) \) be non-negative and monotone decreasing in \([a, b].\)

(b) \(g(t) \) satisfy the constraint \(0 \leq g(t) \leq 1, t \in [a, b]. \)

Then

\[\int_{b-c}^{b} f(t) \, dt \leq \int_{a}^{b} f(t) g(t) \, dt \leq \int_{a}^{a+c} f(t) \, dt, \]

where

\[c = \int_{a}^{b} g(t) \, dt. \]

Let us give a proof for the sake of completeness. Define the function \(u(s) \) by the relation

Received by the editors November 3, 1958 and, in revised form, December 8, 1958.

This is an appropriate place to note that the results in [1] and [4] are themselves special cases of Theorem 108 of *Inequalities* by Hardy, Littlewood and Pólya.
\[\int_{a}^{b} f(t)g(t)\,dt = \int_{a}^{u} f(t)\,dt. \]

It is easy to see that \(u(a) = a \), that \(u(s) \) is continuous and monotone increasing as \(s \) goes from \(a \) to \(b \), and that \(u(s) \leq s \). The condition that \(0 \leq g(t) \leq 1 \) is essential here. We have, upon differentiating,

\[f(u) \frac{du}{ds} = f(s)g(s), \]

whence,

\[\frac{du}{ds} = \frac{f(s)g(s)}{f(u)} \leq g(s), \]

taking account of the fact that \(u(s) \leq s \) and that \(f(s) \) is monotone decreasing. Hence,

\[u \leq a + \int_{a}^{s} g(s)\,ds. \]

This yields the right-hand side of (2), and the left-hand side is derived in the same fashion.

3. Olkin's inequality. To derive Olkin's result, choose for \(g(t) \) the function defined by

\[g(t) = \lambda_k, \quad a_{k+1} \leq t \leq a_k, \quad k = 1, 2, \ldots, m - 1, \]

where \(\lambda_1 = w_1, \lambda_2 = w_1 - w_2, \lambda_3 = w_1 - w_2 + w_3, \) and so on, and for \(h(t) \) the function defined by

\[h'(t) = f(t). \]

Using the inequality of (2.2) for the preceding choice of functions, we obtain a slightly stronger result of the form of (1.2).

4. A generalization of Steffensen's inequality. Let us now establish a generalization of the inequality given in §2. It will be clear that many further results of this type can be obtained using the same techniques.

Theorem 3. Let

(a) \(f(t) \) be non-negative and monotone decreasing in \([a, b] \).

(b) \(f \in L^p[a, b] \).

(c) \(g(t) \geq 0 \) in \([a, b] \) and \(\int_{a}^{b} g^p\,dt \leq 1 \),
where $p > 1$ and $1/p + 1/p' = 1$. Then

$$\left(\int_a^b f g dt \right)^p \leq \int_a^{a+c} f^p dt,$$

where

$$c = a + \left(\int_a^b g dt \right)^p.$$

Proof. Consider the function $u(t)$ defined for $a \leq t \leq b$ by the equation

$$\left(\int_a^t f g dt \right)^p = \int_a^t f^p dt.$$

Since

$$\left(\int_a^t f g dt \right)^p \leq \left(\int_a^t f^p dt \right) \left(\int_a^t g^p' dt \right)^{p/p'},$$

we see that $u(t)$ exists and satisfies the relation $u(t) \leq t$ for t in $[a, b]$ with $u(a) = a$. This function is monotone increasing and satisfies the differential equation

$$f(u)^p \frac{du}{dt} = pf(t)g(t) \left(\int_a^t f g dt \right)^{p-1}$$

almost everywhere.

The monotonic nature of $f(t)$ and $u(t)$ yield the inequality

$$\frac{du}{dt} \leq pg(t) \left(\int_a^t g dt \right)^{p-1},$$

whence

$$u(t) \leq a + \left(\int_a^t g dt \right)^p.$$

This completes the proof.

References