A CLASS OF IRREDUCIBLE SYSTEMS OF GENERATORS FOR INFINITE SYMMETRIC GROUPS

R. B. CROUCH

If \(G \) is a group and \(M \) a subset of \(G \) then \(\{ M \} \) is the smallest subgroup of \(G \) containing \(M \). If \(\{ M \} = G \) then \(M \) is a system of generators for \(G \). If no proper subset of \(M \) is a system of generators for \(G \) then \(M \) is irreducible.

Let \(N \) be the set of positive integers; \(d \) the cardinal number of \(N \); \(d^+ \) the successor of \(d \); \(S(d, d^+) \) the group of all one-to-one mappings of \(N \) onto itself; \(A(d, d) \) the alternating subgroup of \(S(d, d^+) \); \(S(d, d) \) the finite symmetric subgroup of \(S(d, d^+) \).

Theorem 1. Let \(M \) consist of the sequence of odd length cycles of \(S(d, d^+) \)

\[(1, 2, \ldots, n_1), (n_1, n_1 + 1, \ldots, n_2), \ldots, \]

\[(n_i, n_i + 1, \ldots, n_{i+1}), \ldots \]

with the order of the cycles \(s_i = k_i \geq 3 \). Then \(M \) is an irreducible system of generators for \(A(d, d) \).

Proof. It is clear from the nature of the set \(M \) that \(\{ M \} \subseteq A(d, d) \). Furthermore, if \(c_i \) is removed from \(M \) then every element of the group generated by the remaining set leaves the integer \(n_{i-1} + 1 \) fixed. It is sufficient, therefore, to prove that every element of \(A(d, d) \) belongs to \(\{ M \} \). Since the 3-cycles generate \(A(d, d) \) we shall show any 3-cycle belongs to \(M \).

Let \(x_1 < x_2 < x_3 \) be any triple of elements of \(N \). There exists an element \(s_i \) of \(M \) such that \(x_i \subseteq s_i \) and \(x_i \) is not the greatest element of \(s_i \), \(i = 1, 2, 3 \). Furthermore, there exists a positive integer \(\alpha_i \) such that \(s_i^{\alpha_i}(x_i) = m_i \) where \(m_i \) is the largest integer in \(s_i \). In the set \(M \) choose the cycle, say \(s_0 \), which is the immediate successor of \(s_3 \) in the sequence of cycles of \(M \). Denote by \(s_{i1}, s_{i2}, \ldots, s_{i\alpha_i} \) the elements of \(M \) which occur in the sequence between \(s_i \) and \(s_0 \). Consider the product

\[
\left(^{a_i-1} s_i \right) ^{a_i-1} s_i \ s_{i1}^{-1} s_{i2}^{-1} \cdots s_{i\alpha_i}^{-1} s_0 s_{i\alpha_i} \cdots s_{i1} s_{i2} s_i^{t_i-a_i}
\]

where \(t_i \) is the order of \(s_i \). A computation shows that this product is

\[(x_1, a_2, \ldots, a_p) \]

where \(s_0 = (a_1, a_2, \ldots, a_p) \). Denote by \(d_1, d_2, d_3 \) the three cycles that

Presented to the Society, April 18, 1959; received by the editors March 7, 1959.
the above formula yields. Now compute $d_1d_2^{-1}$ and $d_1d_3^{-1}$ which yield (x_1, x_2, a_p) and (x_1, x_3, a_p). A final computation of $d_1d_2^{-1}d_3d_1^{-1}$ shows that (x_1, x_2, x_3) belongs to M.

Theorem 2. Let M consist of the sequence of cycles of $S(d, d^+)$, where c_1 is of even length,

$$(1, 2, \cdots, n_1), (n_1, n_1 + 1, \cdots, n_2), \cdots,
(n_i, n_i + 1, \cdots, n_{i+1}), \cdots$$

with the order of the cycles $s_i = k_i \geq 4$. Then M is an irreducible system of generators for $S(d, d)$.

Proof. By an argument similar to the one given above, it is clear that $A(d, d) \subseteq M$. If x_1, x_2 are any elements of N and $c_1 = (1, 2, \cdots, n_1)$ then $(x_1, x_2)c_1$ is a member of $A(d, d)$, hence in $\{M\}$. But c_1 belongs to M, hence to $\{M\}$ and $(x_1, x_2)c_1c_1^{-1} = (x_1, x_2)$ is in $\{M\}$.

Corollary. There exists d^d irreducible systems of generators for $S(d, d)$ and $A(d, d)$.

Theorem 3. Let M consist of all elements of the form $(i, i + 1)$, $i = 1, 2, \cdots, n, \cdots$. Then M is an irreducible system of generators for $S(d, d)$.

Proof. Let $r < s$ be any distinct elements of N. Then the formula

$$(r, r + 1)(r + 1, r + 2) \cdots (s - 1, s)(s - 2, s - 1) \cdots$$

shows that M contains any transposition. The set M is irreducible because if M_1 is M with $(i, i+1)$ removed then M_1 does not contain $(i+1, x)$ for $x > i+1$.

New Mexico State University