SOLUTIONS OF FIRST ORDER DIFFERENTIAL EQUATIONS WHICH ARE SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER

LAWRENCE GOLDMAN

Let \mathcal{F} be an ordinary differential field (i.e., a field with a given derivation) of characteristic zero. An element z belonging to a differential field extension of \mathcal{F} is said to be of order r over \mathcal{F} if the lowest order irreducible differential equation with coefficients in \mathcal{F} that z satisfies is of order r. It follows that z is of order r over \mathcal{F} if and only if the degree of transcendency of $\mathcal{F}(z)$ over \mathcal{F} is r.

In [4] Ritt proved that if $P, Q \in \mathcal{F}\{y\}$ and Q vanishes for every zero of P then the sum of the lowest (highest) degree terms of Q vanishes for every zero of the sum of the lowest (highest) degree terms of P.

For our purpose we need the following slight generalization; it can be obtained either by essentially the same proof as used by Ritt, or as an almost immediate corollary of this theorem.

Theorem 1. Let $P, Q \in \mathcal{F}\{y\}$ and let Q vanish for every zero of P which is of order $\geq r$ over \mathcal{F}; then the sum of lowest (highest) degree terms of Q vanishes for every zero of the sum of lowest (highest) degree terms of P which is of order $\geq r$ over \mathcal{F}.

Theorem 2. Let z be a zero of an nth order linear differential polynomial $L(y) \in \mathcal{F}\{y\}$ and let the order of z over \mathcal{F} be 1. Then there exists an integer r, $0 \leq r < n$, such that $z^{(r)}$ is a zero of an irreducible first order differential polynomial $P(y) \in \mathcal{F}\{y\}$ the sum of whose highest degree terms is of order 1 and $z^{(r)}$ is of order 1 over \mathcal{F}.

Proof. Since z is of order 1 over \mathcal{F}, $\mathcal{F}(z) = \mathcal{F}(z, z')$, which is an algebraic function field of one variable over \mathcal{F}. Let v be an infinite valuation on $\mathcal{F}(z, z')$ such that v is trivial on \mathcal{F} and for any $Q(z), R(z) \in \mathcal{F}[z]v(Q/R) = \text{degree of } R - \text{degree of } Q$. Since z is a zero of an nth order linear differential polynomial we can not have $v(z^{(s+1)}) < v(z^{(s)})$ for all s less than n. Let r be the smallest integer such that $v(z^{(r+1)}) \geq v(z^{(r)})$; then the order of $z^{(r)}$ over \mathcal{F} is 1. For, $z^{(r)} \in \mathcal{F}(z)$ so that the order of $z^{(r)}$ over \mathcal{F} is ≤ 1; if $z^{(r)}$ were algebraic over \mathcal{F} then $v(z^{(r)})$ would be zero, which is greater than $v(z)$, contradicting our assumption on the minimality of r. Let $P(y) \in \mathcal{F}\{y\}$ be the first order ir-

Received by the editors March 19, 1959.

1 This research was supported by the National Science Foundation.
reducible differential polynomial which vanishes for \(z^{(r)} \). Since at least two terms of \(P(z^{(r)}) \) must have the same smallest value under the given valuation \(v \), it follows that the highest degree terms of \(P(y) \) are of order 1.

A homogeneous linear differential polynomial \(L(y) \in \mathcal{F}\{y\} \) is said to be linearly reducible over \(\mathcal{F} \) if there exist homogeneous linear differential polynomials \(M(y), N(y) \in \mathcal{F}\{y\} \), each one of positive order, such that

\[
L(y) = M(N(y)).
\]

If no such decomposition exists we say \(L(y) \) is linearly irreducible over \(\mathcal{F} \).

Theorem 3. Let \(L(y) \in \mathcal{F}\{y\} \) be a homogeneous linear differential polynomial linearly irreducible over \(\mathcal{F} \). If a zero \(z \) of \(L(y) \) is of order 1 over \(\mathcal{F} \), then there exists a fundamental system of zeros \((u_1, \cdots, u_n) \) of \(L(y) \) such that \(u_i'/u_i, i = 1, \cdots, n \), is algebraic over \(\mathcal{F} \).

Proof. Since \(L(y) \) is linearly irreducible over \(\mathcal{F} \) it suffices\(^2\) to show the existence of one zero \(u \) of \(L(y) \) such that \(u'/u \) is algebraic over \(\mathcal{F} \) [2]. By Theorem 2 there exists an integer \(r \) such that \(z^{(r)} \) is a zero of a first order differential polynomial \(P(y) \in \mathcal{F}\{y\} \) the sum of whose highest degree terms is of order 1. Because \(L(y) \) is linearly irreducible there exist homogeneous linear differential polynomials \(M(y), N(y) \in \mathcal{F}\{y\}, M(y) \) linearly irreducible over \(\mathcal{F} \), such that \(M(z^{(r)}) = 0 \) and, for any nontrivial zero \(w \) of \(M(y) \), \(N(w) \) is a nontrivial zero of \(L(y) \) [5, vol. 2, pp. 164, 165]. By Theorem 1 there exists a nontrivial zero \(w \) of the sum of the highest degree terms of \(P(y) \) such \(M(w) = 0 \). Since \(w \) is a zero of a homogeneous first order differential polynomial \(w'/w \) is algebraic over \(\mathcal{F} \). Let \(u = N(w) \) then \(L(u) = 0 \). Since \(w'/w \) is algebraic over \(\mathcal{F} \), \(u = kw \), where \(k \) belongs to an algebraic extension of \(\mathcal{F} \), so that \(u'/u \) is algebraic over \(\mathcal{F} \) and our theorem follows.

Definition. If the lowest order linear differential polynomial which vanishes for \(z \) is of order \(n \), then we say that the linear order of \(z \) over \(\mathcal{F} \) is \(n \). Let the linear order of \(z \) over \(\mathcal{F} \) be \(n \) and let \(V \) be the set of all linear differential polynomials in \(z \) with coefficients in \(\mathcal{F} \). \(V \) is, in an obvious way, an \(n + 1 \) dimensional vector space over \(\mathcal{F} \) so that the linear order of any element of \(V \) over \(\mathcal{F} \) is \(\leq n \).

\(^2\) Loewy assumes that \(\mathcal{F} \) has an algebraically closed field of constants and uses in his proof the automorphisms of a Picard-Vessiot extension of \(\mathcal{F} \). It is easily seen, however, that by the substitution of relative isomorphisms over \(\mathcal{F} \) for his automorphisms, the proof remains valid. For, we can use the theorem by Kolchin [1] that an element \(t \) belonging to \(\mathcal{K} \), a differential field extension of \(\mathcal{F} \), which is left invariant by every isomorphism of \(\mathcal{K} \) over \(\mathcal{F} \), belongs to \(\mathcal{F} \).
Theorem 4. Let z be a zero of a first order differential polynomial $P(y) \in \mathcal{F}\{y\}$ and of a linear differential polynomial $L(y) \in \mathcal{F}\{y\}$, and let $\overline{\mathcal{F}}$ be the algebraic closure of \mathcal{F}. There exists $u \in \overline{\mathcal{F}}(z)$ such that z is algebraic over $\mathcal{F}(u)$ and the linear order of u over $\overline{\mathcal{F}}$ is 1.

Remark. If a first order differential polynomial $P(y) \in \mathcal{F}\{y\}$ factors over $\overline{\mathcal{F}}$ into linear factors, it is well known that any zero u of $P(y)$ is a zero of a linear differential polynomial of higher order with coefficients in \mathcal{F} [3]. Also, any polynomial $z \in \overline{\mathcal{F}}\{u\}$ is a zero of a first order differential polynomial $Q(y) \in \mathcal{F}\{y\}$ and of a linear differential polynomial with coefficients in \mathcal{F}. $Q(y)$ may remain irreducible over $\overline{\mathcal{F}}$. For example, let \mathcal{F} be the field of rational numbers, $u = e^x$, $z = e^x + e^{2x}$; $Q(y) = (2y - y')^2 - (y' - y)$ is, obviously, irreducible over $\overline{\mathcal{F}}$. Our theorem states that besides the obvious cases just mentioned there is only one more possibility for an element z to be simultaneously a zero of a first order and of a linear differential polynomial; namely that z belongs to an algebraic extension of $\overline{\mathcal{F}}(u)$ where u is a zero of a first order linear differential polynomial with coefficients in $\overline{\mathcal{F}}$.

Proof of Theorem. If $z \in \overline{\mathcal{F}}$ we take $u = z$. Let the order of z over \mathcal{F} (and hence over $\overline{\mathcal{F}}$) be 1. Let V be the vector space of all linear differential polynomials in z with coefficients in $\overline{\mathcal{F}}$. Since z is a zero of a linear differential polynomial, V is a finite dimensional vector space. For any element $v \in V$, $\overline{\mathcal{F}}(v) \subseteq \overline{\mathcal{F}}(z)$ so that order of v over $\overline{\mathcal{F}}$ is ≤ 1. Let A be the set of all elements v in V such that order of v over $\overline{\mathcal{F}}$ is 1. A is not empty since $z \in A$. Of all the elements in A choose u such that the linear order of u over $\overline{\mathcal{F}}$ is least. We are going to show that the linear order of u over $\overline{\mathcal{F}}$ is 1.

Let the linear order of u over $\overline{\mathcal{F}}$ be n and let W be the $n+1$ dimensional vector space over $\overline{\mathcal{F}}$ of all linear differential polynomials in u with coefficients in $\overline{\mathcal{F}}$. For any $w \in W - \overline{\mathcal{F}}$ the following holds:

1. $w \in A$ (i.e. w is of order 1 over $\overline{\mathcal{F}}$).
2. Linear order of w over $\overline{\mathcal{F}}$ is n.
3. If the nth order linear equation that w satisfies over $\overline{\mathcal{F}}$ is $M(y) = f$, $M(y)$ homogeneous, $f \in \overline{\mathcal{F}}$; then $M(y)$ is linearly irreducible.

To prove (1) note that $w \in V - \overline{\mathcal{F}}$ and, since $\overline{\mathcal{F}}$ is algebraically closed the order of w over $\overline{\mathcal{F}}$ is 1. Since $w \in A$ the linear order of w over $\overline{\mathcal{F}}$ is $\geq n$ (since n was least) but $w \in W$ and each element in W has linear order over $\overline{\mathcal{F}} \leq n$. This proves (2). To prove (3) we note that if $M(y) = N_2(N_1(y))$, $N_1(y)$ of positive order, then the linear order of $N_1(w)$
over \mathfrak{F} is the order of N_2 which is less than linear order of w over \mathfrak{F} contradicting (2). Hence $M(y)$ is linearly irreducible over \mathfrak{F}.

Now, by Theorem 2, there exists $w \in W - \mathfrak{F}$ such that w is a zero of a first order differential polynomial $Q(y) \in \mathfrak{F}\{y\}$ the sum of whose highest degree terms is of order 1. Since \mathfrak{F} is algebraically closed the sum of the highest degree terms factors into linear factors with at least one of the factors $N_1(y)$ of order 1. By Theorem 1 a generic zero of the prime differential ideal generated by $N_1(y)$ is a zero of $M(y)$ (since the generic zero is of order 1 over \mathfrak{F}), so that $M(y)$ belongs to the prime differential ideal $\{N_1(y)\}$. Since $M(y)$ is linear (i.e. of the same degree as $N(y)$), $M(y) = N_2(N_1(y))$. By (3) $M(y)$ is linearly irreducible so that $N_2(y)$ is of order zero and $M(y)$ is of order 1. By (2) this implies that $n = 1$ and the linear order of u over \mathfrak{F} is 1. Since u is of order 1 over \mathfrak{F} it follows that z is algebraic over $\mathfrak{F}\langle u \rangle$; this proves our theorem.

Corollary. If a zero z of a first order differential polynomial $P(y) \in \mathfrak{F}\{y\}$ is a zero of a linear differential polynomial $L(y) \in \mathfrak{F}\{y\}$, then either z is algebraic over \mathfrak{F} or $P(y)$ is solvable by quadratures.

References

Stevens Institute of Technology