Algebraic division ring extensions
HTML articles powered by AMS MathViewer
- by Carl Faith
- Proc. Amer. Math. Soc. 11 (1960), 43-53
- DOI: https://doi.org/10.1090/S0002-9939-1960-0111775-8
- PDF | Request permission
References
- M. P. Drazin, Rings with nil commutator ideals, Rend. Circ. Mat. Palermo (2) 6 (1957), 51–64. MR 96706, DOI 10.1007/BF02848442
- Carl C. Faith, Submodules of rings, Proc. Amer. Math. Soc. 10 (1959), 596–606. MR 108521, DOI 10.1090/S0002-9939-1959-0108521-2
- Carl Faith, Radical extensions of rings, Proc. Amer. Math. Soc. 12 (1961), 274–283. MR 120250, DOI 10.1090/S0002-9939-1961-0120250-7
- I. N. Herstein, The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864–871. MR 58580, DOI 10.2307/2372554 —, A theorem on rings, Canad. J. Math. vol. 5 (1953) pp. 238-241.
- I. N. Herstein, A theorem concerning three fields, Canadian J. Math. 7 (1955), 202–203. MR 68525, DOI 10.4153/CJM-1955-025-7
- Masatoshi Ikeda, On a theorem of Kaplansky, Osaka Math. J. 4 (1952), 235–240. MR 52402
- N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. of Math. (2) 46 (1945), 695–707. MR 14083, DOI 10.2307/1969205 —, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37, Providence, 1956.
- Irving Kaplansky, A theorem on division rings, Canad. J. Math. 3 (1951), 290–292. MR 42389, DOI 10.4153/cjm-1951-033-7
- Tadasi Nakayama, On the commutativity of certain division rings, Canad. J. Math. 5 (1953), 242–244. MR 53083, DOI 10.4153/cjm-1953-026-3 —, Über die Kommutativität gewisser Ringe, Abh. Math. Semi. Univ. Hamburg. vol. 20 (1955) pp. 20-27.
- Alex Rosenberg and Daniel Zelinsky, On Nakayama’s extension of the $x^{n(x)}$ theorems, Proc. Amer. Math. Soc. 5 (1954), 484–486. MR 64022, DOI 10.1090/S0002-9939-1954-0064022-7
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 11 (1960), 43-53
- MSC: Primary 16.00
- DOI: https://doi.org/10.1090/S0002-9939-1960-0111775-8
- MathSciNet review: 0111775