1. Introduction. The concept of Hausdorff-analytic (H-analytic) functions on an (associative) hypercomplex system, over the complex number field, with an identity [1] is, in this paper, applied to functions of matrices with distinct eigenvalues. In the process of showing a sufficient condition for a matric function to be H-analytic in a neighborhood of a matrix Z_0 with distinct eigenvalues, it is shown that the projections (Frobenius covariants) are H-analytic in a neighborhood of Z_0, and that there exists a matric function $Q = Q(Z)$ which is H-analytic in a neighborhood of Z_0 such that $Q^{-1}ZQ = \Lambda = \text{diag} (\lambda_k)$, $\lambda_i \neq \lambda_j$ for $i \neq j$, for all Z in that neighborhood of Z_0.

It has previously been shown [2] that if $f(Z)$ is a function on \mathfrak{M} (the algebra of all square matrices of order n over the complex number field) whose component functions are analytic functions, in some open domain, of the complex (component) variables z_{ij} of $Z = (z_{ij})$, then $f(Z)$ is H-analytic in a corresponding open domain of \mathfrak{M}.

2. H-analyticity of the projections of a matrix with distinct eigenvalues.

Lemma 2.1. The projections (or Frobenius covariants) $P_k(Z)$ corresponding to the eigenvalues λ_k, $k = 1, \cdots, s$, of a matrix Z in \mathfrak{M} are given by

$$P_k(Z) = \frac{1}{2\pi i} \int_{C_k} (\lambda I - Z)^{-1} d\lambda,$$

where C_k is a circle in the complex λ-plane containing λ_k but none of the other λ_i.

Proof. By [4, p. 22],

$$(\lambda I - Z)^{-1} = \sum_{j=1}^{s} P_j(Z) \sum_{m=0}^{r_j-1} \frac{(Z - \lambda_j I)^m}{(\lambda - \lambda_j)^{m+1}},$$

where r_j is the index of λ_j.

The integral, over a curve in the complex λ-plane, of a matrix of complex functions is given by the matrix of integrals, over the curve, of the matrix elements. Therefore if we let C_k be a circle containing

Received by the editors January 13, 1959 and, in revised form, April 13, 1959.

1 This paper was prepared under the facilities granted by the Case Research Fund.

2 The author is now associated with Arizona State University.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\(\lambda_k \) but none of the other \(\lambda_j \), then

\[
\frac{1}{2\pi i} \int_{c_k} (\lambda I - Z)^{-1} d\lambda = \frac{1}{2\pi i} \sum_{j=1}^{s} \sum_{m=0}^{r_j-1} (Z - \lambda_j I)^m \int_{c_k} \frac{d\lambda}{(\lambda - \lambda_j)^{m+1}} = P_k(Z).
\]

We will use this representation to prove the following.

Theorem 2.1. If \(Z_0 \) is a matrix with distinct eigenvalues, then there exists a neighborhood \(N \) of \(Z_0 \) such that for \(Z \) in \(N \), \(P_k(Z) \) is an \(H \)-analytic function of \(Z \).

Proof. Let \(\lambda_k, k = 1, \ldots, n \), be the (distinct) eigenvalues of \(Z_0 \), then

\[
P_k(Z_0) = \frac{1}{2\pi i} \int_{c_k} (\lambda I - Z)^{-1} d\lambda
\]

is the projection of \(Z_0 \) corresponding to \(\lambda_0 \), where \(C_k \) is a sufficiently small circle which has \(\lambda_0 \) as its center and all other \(\lambda_0 \) in its exterior, that is, if \(|\lambda_k - \lambda_0| > 2e \) for \(j \neq k \), then \(C_k: |\lambda - \lambda_0| = e \) will be sufficient.

Now, for all matrices \(Z \) sufficiently near \(Z_0 \), that is, such that norm(\(Z - Z_0 \)) is sufficiently small (where, for convenience, the norm of any matrix \(X = (x_{ij}) \), \(i = 1, \ldots, m \), \(j = 1, \ldots, n \), with complex components, shall be defined by norm\((X) = \max_{i,j} |x_{ij}| \)), the eigenvalues \(\lambda_1, \ldots, \lambda_n \) of \(Z \) will be near those of \(Z_0 \), since the eigenvalues of a matrix are continuous functions of the elements of the matrix \([2] \). Thus, a neighborhood \(N \) of \(Z_0 \) may be chosen such that \(|\lambda_k - \lambda_0| < e, k = 1, \ldots, n \), then for each \(Z \) in \(N \), \(Z \) has distinct eigenvalues \(\lambda_j \), and \(\lambda_k \) lies within \(C_k \) while all other \(\lambda_j \) lie outside \(C_k \). Hence for all \(Z \) in \(N \),

\[
P_k(Z) = \frac{1}{2\pi i} \int_{c_k} (\lambda I - Z)^{-1} d\lambda.
\]

The \(r, s \) element of the matrix \(P_k(Z) \) is given by

\[
P_k(Z)_{rs} = \frac{1}{2\pi i} \int_{c_k} R_{rs}(\lambda, z_{ij}) d\lambda,
\]

where \(R_{rs}(\lambda, z_{ij}) \) is the quotient of two polynomials in \(\lambda \) and the \(z_{ij}, i, j = 1, \ldots, n \). Since \(C_k \) does not pass through any of the zeros of \(\det(\lambda I - Z) \), regardless of what \(Z \) in \(N \) is chosen, \(R_{rs}(\lambda, z_{ij}) \) is a continuous function of the complex variables \(\lambda \) and \(z_{ij}, i, j = 1, \ldots, n \),
where each z_{ij} ranges over a region N_{ij} determined by N, and λ lies on C_k; also $R_{\alpha}(\lambda, z_{ij})$ is an analytic function of each z_{ij} in N_{ij}, for every value of λ of C_k. Therefore, $P_k(Z)_{\alpha}$ is an analytic function of each z_{ij} of Z in N, and hence, the components $P_k(Z)_{\alpha}$ are analytic functions of z_{ij}, that is $P_k(Z)$ is H-analytic at Z in N.

3. The existence of $Q(Z)$.

Lemma 3.1. If Z_0 is a matrix with distinct eigenvalues and x is a vector such that $P_k(Z_0)x \neq 0$ for every $k = 1, \cdots, n$, then for Z sufficiently near Z_0, $P_k(Z)x \neq 0$, $k = 1, \cdots, n$.

Proof. Since $P_k(Z_0)x \neq 0$ for every $k = 1, \cdots, n$, there exists a $\delta > 0$ such that $\text{norm}(P_k(Z_0)x) > \delta$ for every k. Now $P_k(Z)$ is an H-analytic function of Z in a neighborhood of Z_0 and therefore a continuous function of Z in a neighborhood of Z_0. Thus, for Z near Z_0, $P_k(Z)$ is near $P_k(Z_0)$ and therefore $P_k(Z)x$ is near $P_k(Z_0)x$; in particular Z may be chosen sufficiently close to Z_0 such that

$$\text{norm}(P_k(Z)x - P_k(Z_0)x) < \delta/2,$$

for all k. Hence, for all Z in such a neighborhood N of Z_0,

$$\text{norm}(P_k(Z)x) \geq \text{norm}(P_k(Z_0)x) - \text{norm}(P_k(Z_0)x - P_k(Z)x)$$

$$> \delta - \delta/2 = \delta/2 > 0.$$

Thus, for Z in N, $P_k(Z)x \neq 0$ for every $k = 1, \cdots, n$.

Theorem 3.1. Let Z_0 be a matrix with distinct eigenvalues; then there exists a nonsingular matrix Q whose components are analytic functions of the elements of Z, for Z in some neighborhood N of Z_0 (therefore Q and Q^{-1} are H-analytic functions of Z in N), such that $Q^{-1}ZQ = \Lambda = \text{diag}(\lambda_k)$ for all Z in N.

Proof. Choose a vector x such that $P_k(Z_0)x \neq 0$ for all $k = 1, \cdots, n$, then by Lemma 3.1, for Z sufficiently near Z_0, $Q_k = P_k(Z)x \neq 0$. By [4, p. 22], $(Z - \lambda_k I)Q_k = 0$, since the index r_k of λ_k is 1 for all k, that is, $ZQ_k = \lambda_k Q_k$. Now, let Q be the matrix whose jth column is Q_j, then $ZQ = QA$, where $A = \text{diag}(\lambda_k)$. Therefore, since the Q_k are linearly independent $Q^{-1}ZQ = \Lambda$.

Since $Q_k = P_k(Z)x$, the components of Q_k are linear combinations of the elements of $P_k(Z)$ and therefore, by Theorem 2.1, they are analytic functions of the elements z_{ij} of Z in a neighborhood of Z_0. Hence Q is H-analytic in a sufficiently small neighborhood N of Z_0.

Also $Q^{-1} = (S_{ij}/\text{det}(Q))$, where S_{ij} is the cofactor of the j, i component of Q. Since $\text{det}(Q) \neq 0$, and S_{ij} and $\text{det}(Q)$ are polynomials.
with constant coefficients in the analytic components of Q, the components at Q^{-1} are analytic functions of the elements of Z in N and therefore Q^{-1} is also H-analytic in N.

Note: If one knows a Q_0 such that $Q_0^{-1}Z_0Q_0 = \Lambda_0 = \text{diag}(\lambda_i^0)$ for the given Z_0, then, for the above x, one may choose $x = \sum_{j=1}^{n} Q_0^{(j)}$, where $Q_0^{(j)}$ is the jth column of Q_0, since $Z_0Q_0^{(k)} = \lambda_i^0Q_0^{(k)}$, that is $P_k(Z_0)Q_0^{(j)} = \delta_{jk}Q_0^{(k)}$, and therefore $P_k(Z_0)x = Q_0^{(k)} \neq 0$ for every $k = 1, \ldots, n$.

Corollary 3.1. If the matrix Z has distinct eigenvalues λ_k, $k = 1, \ldots, n$, then the λ_k are analytic functions of the components z_{ij} of Z.

4. **A sufficient condition for H-analyticity of a matrix function at a matrix with distinct eigenvalues.** The hypothesis of (i) of the following theorem would be desirable if one wished to view this as a theory for functions of linear transformations of a finite dimensional vector space, for the invariance under similarity transformations, $F(Y) = P^{-1}F(X)P$ for $Y = P^{-1}XP$, permits the definition of a function of a finite dimensional linear transformation to be independent of the choice of basis for the vector space.

Theorem 4.1. Let $F = \sum_{i,j=1}^{n} f_{ij}E_{ij}$ be a matrix function (where E_{ij} is the $n \times n$ matrix with a 1 in the i, j position and zeros elsewhere).

(i) Let F be such that, F defined at X and $Y = P^{-1}XP$ implies that F is defined at Y and $F(Y) = P^{-1}F(X)P$; then, for a given X at which F is defined, $F(X)$ is a polynomial in X. In particular, if $\Lambda = \text{diag}(\lambda_i)$ is a diagonal matrix at which F is defined, then $F(\Lambda)$ is a diagonal matrix, that is,

$$f_{ij}]_{x_i = \delta_{ir} \lambda_r} = \delta_{ij}g_i(\lambda_1, \ldots, \lambda_n).$$

(ii) Further, if F is also such that the diagonal component functions f_{ii} are analytic functions of each λ_i at the components of a diagonal matrix with distant eigenvalues λ_i, at which F is defined, that is,

$$\left. \frac{\partial f_{ii}}{\partial z_{jj}} \right|_{x_i = \delta_{ir} \lambda_r} = \frac{\partial g_i}{\partial \lambda_j},$$

exist for $i, j = 1, \ldots, n$, then, F is H-analytic at a matrix Z with distinct eigenvalues at which F is defined.

Proof. To prove the first part of this theorem we shall use the following lemma obtained by Richter [3].

Lemma 4.1. Let F be a function which satisfies the hypothesis of (i) of Theorem 4.1, and let X be a matrix for which $F(X)$ is defined. If
$XB = BX$, then $F(X)B = BF(X)$, that is, $F(X)$ commutes with every matrix which commutes with X.

Any matrix $F(X)$ satisfying the conclusion of the above lemma is a polynomial in X [5].

To prove the second part of the theorem, let F be defined at a matrix Z with distinct eigenvalues. By Theorem 3.1 there exists a $Q = Q(Z)$, H-analytic at Z, such that $Q^{-1}ZQ = \Lambda = \text{diag}(\lambda_i)$, where the λ_i are the eigenvalues of Z; therefore by (i), $F(Z) = QF(\Lambda)Q^{-1}$ and

$$F(\Lambda) = \sum_{i=1}^{n} g_i E_{ii}.$$

Therefore, since the g_i are analytic functions of the λ_i and by Corollary 3.1, the λ_i are analytic functions of the z_{rs}, r, $s = 1, \ldots, n$, the f_{ij} are analytic functions (in a neighborhood) of the components z_{rs} of Z. Thus F if H-analytic at Z.

References

Case Institute of Technology