It should be noted that Lemma 1 is interesting, independent of strong Lie ideals, for it generalizes a result of [1]. This generalization can be stated as follows:

Theorem 2. Let A be a simple ring of characteristic $\neq 2$, with either its center $Z = (0)$ or of dimension greater than 16 over its center, and with an involution defined on it; then if either K, S, $[K, K]$ or $[K, S]$ are finite dimensional, A is finite dimensional.

References

TRIANGLE INEQUALITY IN l-GROUPS

J. A. KALMAN

In [1, p. 309] G. Birkhoff remarks that "In a commutative l-group, we can . . . prove the triangle inequality $|a+b| \leq |a| + |b|$, but this does not seem to hold in general." The purpose of this note is to show that in fact if

$$|a+b| \leq |a| + |b|$$

for all a and b in the additive l-group G, then G is commutative.

Proof. It is sufficient to show that any two positive elements of G are permutable [2, p. 234]. Suppose therefore that x and y are positive elements of G. Taking $a = -x$ and $b = -y$ in (1), we obtain $x+y \geq |x-y| = y+x$. Similarly $y+x \geq x+y$. Hence $x+y = y+x$. This completes the proof.

References

University of Auckland

Received by the editors August 1, 1959.