A CHARACTERIZATION OF ALGEBRAIC NUMBER FIELDS WITH CLASS NUMBER TWO¹

L. CARLITZ

Let \(Z = \mathbb{Q}(\theta) \) denote an algebraic number field over the rationals with class number \(h \). It is familiar that \(h = 1 \) if and only if unique factorization into prime holds for the integers of \(Z \). For fields with \(h = 2 \) we have the following criterion.

Theorem. The algebraic number field \(Z \) has class number \(\leq 2 \) if and only if for every nonzero integer \(\alpha \in \mathbb{Z} \) the number of primes \(\pi_j \) in every factorization

\[
\alpha = \pi_1 \pi_2 \cdots \pi_k
\]

depends only on \(\alpha \).

Suppose first that \(h = 2 \) and consider the factorization into prime ideals

\[
(\alpha) = \mathfrak{p}_1 \cdots \mathfrak{p}_s \mathfrak{r}_1 \cdots \mathfrak{r}_t,
\]

where the \(\mathfrak{p}_j \) are principal ideals while the \(\mathfrak{r}_j \) are not. Then

\[
\mathfrak{p}_j = (\pi_j) \quad (j = 1, \ldots, s).
\]

Since \(h = 2 \), it follows that

\[
\mathfrak{r}_i \mathfrak{r}_j = (\rho_{ij}) \quad (i, j = 1, \ldots, t);
\]

moreover \(t \) must be even, \(= 2u \), say. Thus every factorization into primes implied by (2), for example

¹ Research sponsored by National Science Foundation grant NSF G-9425.
\[\alpha = e\pi_1 \cdots \pi_u \rho_1 \cdots \rho_{l-1}, \]

where \(e \) is a unit, will contain exactly \(s+u \) primes.

We now show that when \(h > 2 \), there occur factorizations (1) with different values of \(k \). The proof makes use of the fact that every class of ideals contains at least one prime ideal. (For proof of a much stronger result see [1]).

Assume first the existence of a class \(A \) of period \(m > 2 \). Let \(p \) be a prime ideal in \(A \) and \(p' \) a prime ideal in \(A^{-1} \). Then we have

\[p^m = (\pi), \quad p'^m = (\pi'), \quad pp' = (\pi_1), \]

and it is easily verified that \(\pi, \pi', \pi_1 \) are primes. Clearly (3) implies

\[\pi_1 = e\pi\pi', \]

where \(e \) is a unit.

In the next place assume the existence of two classes \(A_1, A_2 \) each of period 2 such that \(A_3 = A_1A_2 \) is not principal. Choose prime ideals \(p_1 \subset A_j \) (\(j = 1, 2, 3 \)). Then we have

\[p_j^2 = (\pi_j) \quad (j = 1, 2, 3), \quad p_1p_2p_3 = (\pi), \]

and again it is easily verified that \(\pi_1, \pi_2, \pi_3, \pi \) are all primes. From (5) we get

\[\pi^2 = \pi_1\pi_2\pi_3. \]

Using (5) and (6) it is evident that when \(h > 2 \), the number of primes \(k \) in (1) is not independent of the factorization.

Since the case \(h = 1 \) requires no further discussion, this completes the proof of the theorem.

Reference