VERIFICATION OF A CONJECTURE OF GERSTENHABER

J. P. JANS

Let T_n denote the algebra of matrices (A_{ij}) where $A_{ij} = 0$ for $i \leq j$ and $A_{ij} \in F$, a field. In a recent paper [1], M. Gerstenhaber conjectured that T_n/T_n^k could not be represented by $n \times n$ matrices if $n \geq 5$ and $3 \leq k \leq n - 1$. He proved there that the conjecture is true for $k = n - 1$. The purpose of this note is to verify this conjecture in general. In fact, we shall prove something a bit stronger.

Theorem. If M is a faithful T_n/T_n^k module where $3 \leq k \leq n - 1$ then $[M: F] \geq 3 + (k - 2)(n - k + 1)$.

Proof. Fix k and n and denote by T the algebra T_n/T_n^k. If M is a faithful T-module then we have the descending sequence $M \supset T^2M \supset \cdots \supset T^{k-1}M \supset T^k M = 0$. We remark that if S is a set of vectors in M then to show S independent it is enough to show that the vectors of S in $T^{i-1}M$ not in $T^i M$ are independent for $i = 1, \cdots, k$. We shall use this principle in the proof.

The algebra T has a basis of matrix units E_{ij} subject to the condition $k - i = j - 1$, with the multiplication table

\[
\begin{array}{c|c}
E_{ij}E_{km} & \delta_{jk}E_{im} \\
\hline
E_{ij}E_{km} & 0 \\
\end{array}
\]

if $i - m \leq k - 1$,

if $i - m > k - 1$.

For fixed j, $1 \leq j \leq n - k + 1$, there is a left ideal L_j spanned by the elements E_{ij}, $i = j, j + 1, \cdots, j + k - 1$ (each of these left ideals has dimension $k - 1$ over F).

In the faithful T-module M we shall find submodules M_j corresponding to the L_j. Each of the M_j will have dimension k over F. We will not be able to show that the sum of the M_j is direct, but we will be able to show a certain amount of independence between them. In this way we can see that the dimension of M is large enough.

Since M is faithful there exists x_j in M such that $E_{j+k-1}x_j \neq 0$. Thus the vectors x_j, $E_{j+1}x_j$, \cdots, $E_{j+k-1}x_j$ are independent and span a submodule M_j of M. That they are independent follows from the remark at the beginning of the proof.

We claim that the following set of vectors is independent:

\[(*) \ x_1, E_{k+1}x_1, \text{ and } E_{ij}x_j \text{ for } 1 \leq i - j \leq k - 2 \text{ and } 1 \leq j \leq n - k + 1.\]

In this set there are $2 + (k - 2)(n - k + 1)$ vectors. After we show that these are independent, we will find one more vector independent of all the vectors in $(*)$. That would complete the proof of the theorem.

Received by the editors August 31, 1959.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We note that \(x_1 \) is in \(M \) but not in \(TM \) and all the rest of the vectors in (*) are in \(TM \). Also \(E_{k1}x_1 \) is in \(T^{k-1}M \) and none of the other vectors in (*) are in \(T^{k-1}M \). The vectors of (*) which are in \(T^tM \) and not in \(T^{t+1}M \) are of the form \(E_{+1+r}x_r \) for \(r = 1, \ldots, n-k+1 \) and \(1 \leq t \leq k-2 \). If there is a dependence relation of the form

\[
\sum_{r=1}^{n-k+1} \beta_r E_{+1+r}x_r = 0,
\]

then the equation can be multiplied by matrix basis elements of the form \(E_{+1} \). The condition, \(t \leq k-2 \), insures that every term but one then drops out and each of the \(\beta_r = 0 \).

Thus by the remark at the beginning of the proof the set (*) is independent. We wish to select one more vector \(x' \) independent of (*). If \(x_2 \) is not a multiple of \(x_1 \) then \(x_2 = x' \) will do the job because \(x_1 \) is the only vector of (*) not in \(TM \). If \(E_{k+1}x_2 \) is not a multiple of \(E_{k1}x_1 \), then we can let \(x' = E_{k+1}x_2 \) since \(E_{k1}x_1 \) is the only vector of (*) in \(T^kM \).

Now suppose that \(x_2 = \alpha x_1 \) and \(E_{k+1}x_2 = \beta E_{k1}x_1 \) where \(\alpha \) and \(\beta \) are both not zero. But then \((\alpha E_{k+1} - \beta E_{k1})x_1 = 0 \) and there exists a vector \(x' \) such that \((\alpha E_{k+1} - \beta E_{k1})x' \neq 0 \). The vectors \(x_1 \) and \(x' \) are independent because \((\alpha E_{k+1} - \beta E_{k1}) \) annihilates one and not the other and neither \(x_1 \) nor \(x' \) is in \(TM \). Thus, in any case, we can find a vector \(x' \) independent of (*) and the dimension of \(M \) over the field \(F \) is at least \(3 + (k-2)(n-k+1) \).

We remark that the nilpotent algebras \(T_n \) considered here are closely related to the algebras of matrices \(S_n \) consisting of matrices \((A_{ij}) \) such that \(A_{ij} = 0 \) if \(i < j \). Let \(S \) be \(S_n \) factored by the \(k \)th power of its radical. \(S \) is almost the algebra \(T \) of the theorem. It can be shown that the algebra \(S \) has \(n-k+1 \) \(k \)-dimensional left ideals (corresponding to the ideals \(L_j \) in the proof of the above theorem) which are projective injective modules over \(S \). Thus, by a theorem in \([2]\) every faithful \(S \)-module must contain as a direct summand the direct sum of these left ideals. Then any faithful \(S \)-module has dimension at least \(k(n-k+1) \). It can be shown that, for \(S \), this inequality cannot be improved. However, we think the inequality of the theorem could be improved a bit by replacing the "3" by something depending on \(n \) and \(k \) (possibly \(k \) itself).

References