DIVISIBLE MODULES

EBEN MATLIS

Introduction. Let \(R \) be an integral domain with quotient field \(Q \), and let \(A \) be a module over \(R \). \(A \) is said to be a divisible \(R \)-module, if \(rA = A \) for every \(r \neq 0 \in R \). An element \(x \in A \) is said to be a torsion element of \(A \), if there exists \(r \neq 0 \in R \) such that \(rx = 0 \). The set of torsion elements of \(A \) is a submodule of \(A \) called the torsion submodule of \(A \), and we will consistently denote it by \(AT \). We will let \(E(A) \) denote the injective envelope of \(A \) (see [3]); and \(\text{hd}_R A \) will denote the homological dimension of \(A \) as an \(R \)-module.

We will study conditions, some necessary, some sufficient, for the torsion submodule of a divisible module to be a direct summand. These will be related to the condition that \(\text{hd}_Q Q = 1 \), where \(Q \) is the quotient field of \(R \). We will apply these conditions to show that, if \(R \) is a Noetherian integral domain in which prime ideals different from zero are maximal, and if \(D \) is a divisible module over \(R \), then \(D \) is a homomorphic image of an injective \(R \)-module and \(DT \) is a direct summand of \(D \). The same conclusions hold, if we merely assume for an arbitrary integral domain that its quotient field is countably generated as a module over the ring.

1. The torsion submodule. It is easy to see that, if \(C \) is an injective module over an integral domain \(R \), then its torsion submodule \(CT \) is also an injective \(R \)-module, and therefore a direct summand. Namely, any homomorphism of an ideal of \(R \) into \(CT \) can be extended to a homomorphism of \(R \) into \(C \); but this extension must in fact map \(R \) into \(CT \). The following theorem is a generalization of this fact.

Theorem 1.1. Let \(R \) be an integral domain and \(H \) a homomorphic image of an injective \(R \)-module. Then \(HT \) is a direct summand of \(H \).

Proof. The mapping of a free \(R \)-module \(F \) onto an injective \(R \)-module \(C \) can be extended to a mapping of \(E(F) \) onto \(C \). We can thus assume that there exists a torsion-free, divisible \(R \)-module \(U \) and an epimorphism \(f: U \to H \). Now \(H/HT \), being torsion-free and divisible, is a direct sum of \(R \)-modules \(Q_i \), where \(Q_i \) is isomorphic to \(Q \) the quotient field of \(R \). Let \(S_i \) be the inverse image of \(Q_i \) under the canonical map \(H \to H/HT \). We will prove that \(HT \) is a direct summand of each \(S_i \), and by [2, Lemma 2] this will complete the proof of the theorem.

Presented to the Society, September 3, 1959; received by the editors May 23, 1959.
Let \(y \in S_j - H_T \); then \(Ry \) is a torsion-free submodule of \(S_j \). Choose \(x \in U \) such that \(f(x) = y \). Since \(U \) is a vector space over \(Q \), there exists an \(R \)-submodule \(T_j \) of \(U \) such that \(T_j \cong Q \) and \(x \in T_j \). If \(u \neq 0 \in T_j \), there exist \(r, s \in R \) such that \(ru = sx \neq 0 \). Since \(rf(u) = sf(x) = sy \neq 0 \), we have \(f(u) \neq 0 \), and thus \(f(T_j) \cong T_j \cong Q \).

Since \(H = \sum_i S_i \), \(f(u) = w + z \), where \(w \in \sum_i S_i \) and \(z \in S_j \). Hence \(r \) \(w + rz = rf(u) = sy \). Thus \(rw + rz = rf(u) = sy \in S_j \). Therefore, \(w \in H_T \subset S_j \), and so \(f(u) \in S_j \). This shows that \(f(T_j) \subset S_j \). Since \(f(T_j) \cong Q \), we have \(f(T_j) \cap H_T = 0 \) and \(f(T_j) \) maps onto \(Q_j \) under the canonical map \(H \to H/H_T \). Thus \(S_j = H_T \oplus f(T_j) \); and so \(H_T \) is a direct summand of \(H \).

Theorem 1.2. Let \(R \) be an integral domain with quotient field \(Q \neq R \). Suppose that \(D_T \) is a direct summand of \(D \) for every divisible \(R \)-module \(D \). Then \(hd_R Q = 1 \).

Proof. Let \(A \) be any \(R \)-module and let \(E = E(A) \). Since \(E \) is an essential extension of \(A \), \(E/A \) is a torsion \(R \)-module. Let \(G \) be any \(R \)-module extension of \(E/A \) by \(Q \). Since both \(Q \) and \(E/A \) are divisible, \(G \) is also divisible. Clearly \(E/A \) is the torsion submodule of \(G \); and thus by assumption \(E/A \) is a direct summand of \(G \). Thus \(Ext^1_R(Q, E/A) = 0 \) [1, Theorem 14.1.1]. We also have \(Ext^n_R(Q, E) = 0 \) for \(n > 0 \), since \(E \) is injective. Therefore, from the exact sequence:

\[
\begin{align*}
\text{Ext}^1_R(Q, E/A) & \to \text{Ext}^2_R(Q, A) \to \text{Ext}^2_R(Q, E)
\end{align*}
\]

we deduce that \(\text{Ext}^2_R(Q, A) = 0 \). Hence \(\text{hd}_R Q \leq 1 \). Since \(Q \) is not \(R \)-projective, \(\text{hd}_R Q = 1 \).

Over an arbitrary integral domain it is not true that \(D_T \) is a direct summand for every divisible module \(D \). For by the above theorem this would imply that \(\text{hd}_R Q = 1 \). However, I. Kaplansky has shown (unpublished) that \(\text{hd}_R Q = 1 \) for a valuation ring \(R \) if and only if \(Q \) is a countably generated \(R \)-module.

Theorem 1.3. Let \(R \) be an integral domain with quotient field \(Q \neq R \), and suppose that \(Q \) is countably generated as a \(R \)-module. Then every divisible \(R \)-module \(D \) is a homomorphic image of an injective \(R \)-module. Thus \(D_T \) is a direct summand of \(D \), and \(\text{hd}_R Q = 1 \).

Proof. There exists a countable set of generators \(\{q_n\} \) for \(Q \) over \(R \), and elements \(\{a_{n+1}\} \) of \(R \) such that \(q_1 = 1 \) and \(a_{n+1}q_{n+1} = q_n \). Let \(D \) be a divisible \(R \)-module, and let \(x \neq 0 \in D \). We define a mapping \(f \) from the generators \(\{q_n\} \) to \(D \). Let \(f(1) = x \); then there exists \(x_2 \in D \) such that \(a_2x_2 = x \), and we define \(f(q_2) = x_2 \). There exists \(x_3 \in D \) such that \(a_3x_3 = x_2 \), and we define \(f(q_3) = x_3 \). We continue in this way and
define f on all the generators $\{q_n\}$. It is easily verified that f induces an R-homomorphism from Q into D such that the image contains x. It is now clear that by taking a big enough direct sum G of copies of Q we can define an R-homomorphism of G onto D.

It should be remarked that if R is any integral domain and S a countable, multiplicatively closed subset of R, then it can be easily shown that if F is a countably generated free R-module and f a suitably chosen mapping of F onto R_S, then the kernel of f is free; and thus $\text{hd}_R R_S \leq 1$.

2. $\text{hd}_R Q = 1$.

Proposition 2.1. Let R be an integral domain with quotient field Q such that $\text{hd}_R Q = 1$. Let H be an R-module. Then the following statements are equivalent:

1. $\text{Ext}^1_R(Q/R, H) = 0$.
2. Every R-homomorphism from R into H can be extended to an R-homomorphism from Q into H.
3. H is a homomorphic image of an injective R-module.

Proof. That (1) implies (2) follows immediately from the exact sequence:

$$\text{Hom}_R(Q, H) \to \text{Hom}_R(R, H) \to \text{Ext}^1_R(Q/R, H).$$

That (2) implies (3) is trivial. That (3) implies (1) follows from the fact that $\text{hd}_R Q/R = 1$.

Proposition 2.2. Let R be an integral domain with quotient field Q such that $\text{hd}_R Q = 1$. Let H be an R-module. Then:

1. If H is a homomorphic image of an injective R-module, so is H_T.
2. If B is a submodule of H and if B and H/B are homomorphic images of injective modules, then so is H.

Proof.

1. If H is a homomorphic image of an injective R-module, then H_T is a direct summand of H by Theorem 1.1. Hence H_T is also a homomorphic image of an injective R-module.
2. Suppose that B and H/B are homomorphic images of injective R-modules. We have an exact sequence:

$$\text{Ext}^1_R(Q/R, B) \to \text{Ext}^1_R(Q/R, H) \to \text{Ext}^1_R(Q/R, H/B).$$

By Proposition 2.1 the two end modules are zero, and thus $\text{Ext}^1_R(Q/R, H) = 0$. Hence by Proposition 2.1 again, H is a homomorphic image of an injective R-module.
DEFINITION. Let B be a module over an integral domain. Then we will say that B is h-reduced, if B has no nonzero submodules which are homomorphic images of injective modules.

Corollary 2.3. Let A be a module over an integral domain R with quotient field Q such that $\text{hd}_R Q = 1$. Then A has a unique largest submodule H which is a homomorphic image of an injective R-module, and A/H is h-reduced.

Proof. Let H be the sum of all submodules of A which are homomorphic images of injective R-modules. It is clear that H is the unique largest submodule of A which is a homomorphic image of an injective R-module. Suppose that B/H is a homomorphic image of an injective R-module, where B is a submodule of A containing H. Then by Proposition 2.2 B is a homomorphic image of an injective R-module. Therefore, $B = H$ and $B/H = 0$.

Proposition 2.4. Let R be an integral domain with quotient field Q such that $\text{hd}_R Q = 1$. Let D be a divisible module over R, and let H be a submodule of D_T such that H is a homomorphic image of an injective R-module. Then D_T is a direct summand of D if and only if D_T/H is a direct summand of D/H.

Proof. Suppose that D_T is a direct summand of D, and let S be a complementary summand of D_T in D. Then $D/H \cong D_T/H \oplus S$, and since D_T/H is the torsion submodule of D/H, D_T/H is a direct summand of D/H. Conversely, suppose that $D/H = D_T/H \oplus G/H$, where G is a submodule of D containing H. Now G/H is torsion-free and divisible, hence injective. Thus by Proposition 2.2 and Theorem 1.1 H is a direct summand of G. Let L be a complementary summand of H in G. Then it is clear that $D = D_T \oplus L$.

Proposition 2.5. Let R be an integral domain with quotient field Q, and let T be an h-reduced torsion R-module. Then $\text{Ext}^1_B(Q, T) = 0$ if and only if $T \cong \text{Ext}^1_B(Q/R, T)$.

Proof. Since $\text{Hom}_R(Q, T) = 0$, we have an exact sequence:

$$0 \rightarrow \text{Hom}_R(R, T) \rightarrow \text{Ext}^1_B(Q/R, T) \rightarrow \text{Ext}^1_B(Q, T) \rightarrow 0.$$

It follows that if $\text{Ext}^1_B(Q, T) = 0$, then $T \cong \text{Ext}^1_B(Q/R, T)$. Conversely, if $T \cong \text{Ext}^1_B(Q/R, T)$, then the above exact sequence shows that $\text{Ext}^1_B(Q, T)$ is a torsion module. However, $\text{Ext}^1_B(Q, T)$ is torsion-free, and thus $\text{Ext}^1_B(Q, T) = 0$.

Corollary 2.6. Let R be an integral domain with quotient field Q.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Then the torsion submodule of a divisible R-module is always a direct summand if and only if the following two conditions hold:

1. $\text{hd}_R Q = 1$.
2. $T \cong \text{Ext}^1_R(Q/R, T)$, whenever T is an h-reduced, torsion, divisible R-module.

Proof. The necessity follows from Theorem 1.2 and Proposition 2.5; the sufficiency follows from Corollary 2.3 and Propositions 2.4 and 2.5.

Proposition 2.7. Let R be an integral domain with quotient field Q such that $\text{hd}_R Q = 1$ and $\text{gl. dim. } R \leq 2$. Let S be any torsion-free R-module. Then $\text{hd}_R S \leq 1$. Thus if A is an R-module such that A_T is a homomorphic image of an injective R-module, then A_T is a direct summand of A.

Proof. Let B be any R-module. Then from the exact sequence:

$$0 \to S \to Q \otimes_R S \to Q/R \otimes_R S \to 0$$

we derive the exact sequence:

$$\text{Ext}^2_R(Q \otimes_R S, B) \to \text{Ext}^2_R(S, B) \to \text{Ext}^3_R(Q/R \otimes_R S, B).$$

Since $\text{hd}_R Q = 1$ and $\text{gl. dim. } R \leq 2$, the two end modules are zero. Thus $\text{hd}_R S \leq 1$, and the rest of the theorem follows immediately.

2. **Krull dimension = 1.**

Throughout this section R will be a Noetherian integral domain with the property that nonzero prime ideals are maximal. We will let Q be the quotient field of R and $K = Q/R$.

Definition. Let A be an R-module and M a prime ideal of R. We will say that A is M-primary, if for any $x \not= 0 \in A$, the order ideal of x is an M-primary ideal. If B is any R-module, and A is the set of all elements of B whose order ideal is M-primary (together with the element 0), then A is an M-primary R-module which we will call the M-primary component of B.

Lemma 3.1. Let B be any torsion R-module. Then B is the direct sum of its M-primary components, M ranging over the prime ideals of R. Furthermore, $B \otimes_R R_M$ is the M-primary component of B.

Proof. Let $\{M_a\}$ be the collection of nonzero prime ideals of R. By [3, Theorem 3.3] $E(B) = \sum_a \oplus E_a$, where E_a is the M_a-component of $E(B)$. Let $B_a = B \cap E_a$; then B_a is the M_a-component of B. Let $x \not= 0 \in B$; then $x = x_1 + \cdots + x_n$, where $x_i \in E_i$. Now $\cap_{i=2}^n M_i \subset M_1$.
hence there exists $s \in \cap_{i=1}^n M_i$ such that $s \in M_1$. Then there exists an integer $k > 0$ such that $s^k x_i = 0$ for $i = 2, \ldots, n$. Hence $s^k x = s^k x_1$.

There are elements $m \in M$ and $t \in R$ such that $1 = m + ts^k$. There is an integer $q > 0$ such that $m x_1 = 0$. Since $1 = m^q + rs^k$, $r \in R$, we have $x_1 = rs^k x_1 = rs^k x \in B_1$. Similarly $x_i \in B_i$ for $i = 2, \ldots, n$. Thus $B = \sum a \oplus B_a$.

Let M_* be a prime ideal of R. Clearly $B_a \otimes_R R_{M_*} = 0$, if $M_a \neq M_*$. Thus $B \otimes_R R_{M_*} = B_* \otimes_R R_{M_*}$. It is easily seen that the canonical map $B_* \to B_v \otimes_R R_{M_*}$ is an epimorphism. However, since B_* is M_*-primary, the kernel of this map is zero. Thus $B_* = B_v \otimes_R R_{M_*}$, and so $B \otimes_R R_{M_*} = B_*$.

Lemma 3.2. $\text{hd}_R Q = 1$.

Proof. It is sufficient to prove that $\text{hd}_R K = 1$. By Lemma 3.1 $K = \sum a \oplus K_{M_a}$; thus it is sufficient to prove that $\text{hd}_R K_{M_*} = 1$. For this it is sufficient to prove that if D is any divisible R-module, then $\text{Ext}_R^1(K_{M_*}, D) = 0$. Let A be any extension of D by K_{M_*}; then A is a divisible R-module. We have $D = \sum a \oplus D_{M_*}$ and $A = \sum a \oplus A_{M_*}$. Clearly $D_{M_*} = D \cap A_{M_*}$. Hence for $a \neq v$, we have $D_{M_*} = A_{M_*}$. Thus we have an exact sequence:

$$0 \to D_{M_*} \to A_{M_*} \to K_{M_*} \to 0,$$

and all of the modules and mappings of this sequence are R_{M_*}-modules and mappings. Thus we can assume that R is a local ring with a single nonzero prime ideal M.

Take $s \neq 0 \in M$, and let S be the multiplicatively closed set consisting of the powers of s. Now $R_S \subseteq Q$; on the other hand, the prime ideals of R_S and the prime ideals of R not meeting S are in 1-1 correspondence. Thus R_S is a field, and $R_S = Q$. Therefore, Q is a countably generated R-module; and thus $\text{hd}_R Q = 1$ by Theorem 1.3, or the remark following it.

Theorem 3.3. Every divisible R-module D is a homomorphic image of an injective R-module; and thus D_T is a direct summand of D.

Proof. Since $\text{hd}_R Q = 1$ by Lemma 3.2, it follows from Proposition 2.2 that we only need to prove that D_T is a homomorphic image of an injective R-module. By Lemma 3.1 $D_T = \sum a \oplus D_{T_a}$, where $D_{T_a} = D_T \otimes_R R_{M_a}$ is a divisible R_{M_a}-module. As we have seen in Lemma 3.2, Q is a countably generated R_{M_*}-module; and thus by Theorem 1.3, D_{T_a} is a homomorphic image of an injective R_{M_*}-module. Thus D_{T_a} is a homomorphic image of an injective R-module; and therefore, the same is true of D_T.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
A CHARACTERIZATION OF ALGEBRAIC NUMBER FIELDS WITH CLASS NUMBER TWO

L. CARLITZ

Let \(Z = \mathbb{R}(\theta) \) denote an algebraic number field over the rationals with class number \(h \). It is familiar that \(h = 1 \) if and only if unique factorization into prime holds for the integers of \(Z \). For fields with \(h \leq 2 \) we have the following criterion.

Theorem. The algebraic number field \(Z \) has class number \(h = 2 \) if and only if for every nonzero integer \(\alpha \in Z \) the number of primes \(\pi_j \) in every factorization

\[
\alpha = \pi_1 \pi_2 \cdots \pi_k
\]

depends only on \(\alpha \).

Suppose first that \(h = 2 \) and consider the factorization into prime ideals

\[
\alpha = p_1 \cdots p_s r_1 \cdots r_t,
\]

where the \(p_j \) are principal ideals while the \(r_j \) are not. Then

\[
p_i = (\pi_i) \quad (j = 1, \ldots, s).
\]

Since \(h = 2 \), it follows that

\[
r_i r_j = (\rho_{ij}) \quad (i, j = 1, \ldots, t);
\]

moreover \(t \) must be even, \(= 2u \), say. Thus every factorization into primes implied by (2), for example

Received by the editors August 3, 1959.

1 Research sponsored by National Science Foundation grant NSF G-9425.