1 - 1 + 1 - 1 + \ldots = \frac{1}{2}

DONALD J. NEWMAN

It is of course well known that 1 - 1 + 1 - 1 + \ldots is Abel-summable to 1/2, that is to say

\[1 - t + t^2 - t^3 + \cdots \to \frac{1}{2} \quad \text{as } t \to 1^{-}. \]

It can also be shown that

\[1 - t + t^4 - \cdots \pm t^n \cdots \to \frac{1}{2} \quad \text{as } t \to 1^{-}. \]

If we consider, however, the rate at which these two functions approach their limit (1/2) then we find that these are worlds apart! In fact

\[
(1 - t + t^2 \cdots) - \frac{1}{2} = \frac{1}{1 + t} - \frac{1}{2} = \frac{1 - t}{2(1 + t)} \sim \frac{1 - t}{4},
\]

whereas an application of the functional equation for the \(\theta \)-function gives

\[
(1 - t + t^4 \cdots) - \frac{1}{2} \sim \left(\frac{\pi \sigma^{-x}}{1 - t} \right)^{1/2} \exp \left(-\frac{\pi^2}{4} \cdot \frac{1}{1 - t} \right).
\]

In this note we show that this anomalous behavior persists for the other functions

\[
f_k(t) = \sum_{n=0}^{\infty} (-1)^n t^{nk}, \quad k = 1, 2, \ldots,
\]

that namely \(f_k(t) \) approaches 1/2 very slowly for \(k \) odd and very quickly for \(k \) even.

Theorem. If \(f_k(t) \) are defined by (1) then

A. for any fixed odd \(k \) there is a \(c > 0 \) such that \(|f_k(t) - 1/2| > c(1 - t) \),

B. for any fixed even \(k \) there is a \(c > 0 \) such that

\[|f_k(t) - 1/2| < A \exp \left(-c/(1 - t)^\alpha \right), \quad \alpha = 1/(k - 1). \]

Proof. Our principal tool will be the Mellin inversion formula which gives

Received by the editors December 11, 1958 and, in revised form, August 1, 1959.
\[1 - 1 + 1 - 1 + \cdots = \frac{1}{2} \]

\[\frac{1}{2\pi i} \int_{2-\infty}^{2+i\infty} \Gamma(s)x^{-s}ds = e^{-x}, \quad x > 0. \]

From this we obtain, by a term by term integration,

\[\frac{1}{2\pi i} \int_{2-\infty}^{2+i\infty} \Gamma(s)x^{-s} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^k} = \sum_{n=1}^{\infty} (-1)^{n-1}e^{-nx} = 1 - f_k(e^{-x}). \]

Now note that

\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^k} = \left(1 - \frac{2}{2^k}\right) \sum_{n=1}^{\infty} \frac{1}{n^k} = (1 - 2^{1-k})\xi(ks) \]

and obtain

\[\frac{1}{2\pi i} \int_{2-\infty}^{2+i\infty} \Gamma(s)x^{-s}(1 - 2^{1-ks})\xi(ks)ds = 1 - f_k(e^{-x}). \]

We now shift the contour from the vertical line \(\text{Re } s = 2 \) to the line \(\text{Re } s = -1/k \). (It is assumed that \(k > 1 \).) The estimates

\[|\Gamma(s)| < Ae^{-c|s|}, \quad |\xi(ks)| < |t|^A, \quad t = \text{Im } s, \quad A, c > 0, \]

are known to be valid in \(-1/k \leq \text{Re } s \leq 2, \quad |t| > 1\) and so the Residue theorem is applicable.

However, in \(-1/k \leq \text{Re } s \leq 2\), the only pole is seen to be at \(s = 0 \) with residue \((1 - 2)\xi(0) = 1/2\) and so we obtain

\[\frac{1}{2\pi i} \int_{-1/k-\infty}^{-1/k+\infty} \Gamma(s)x^{-s}(1 - 2^{1-ks})\xi(ks)ds = \frac{1}{2} - f_k(e^{-x}). \]

Let us now utilize the functional equation of the \(\xi \)-function, namely

\[\xi(s) = \frac{1}{\pi} (2\pi)^s \sin \frac{\pi}{2} s\Gamma(1 - s)\xi(1 - s). \]

If we introduce this into (3) and then call \(1 - ks = z \) the result is

\[-\frac{1}{k\pi i} \int_{2-\infty}^{2+i\infty} \pi^{-s}\Gamma\left(\frac{1 - z}{k}\right) \Gamma(z) \cos \frac{\pi}{2} z^x(e^{-1}/k)(1 - 2^{-x})\xi(z)dz \]

\[= \frac{1}{2} - f_k(e^{-x}). \]

Proof of A. Here \(k \) is odd. If we shift the contour from 2 to \(2k \) then the residue theorem is again applicable and it gives one residue at \(z = k+1 \), namely \(c\pi \) where
\[c = \frac{2(k)!}{\pi^{k+1}} (1 - 2^{-(k+1)}) \xi(k + 1)(-1)^{(k-1)/2}. \]

The remaining contour integral is the same as that in (5) with the limits changed to \(2k-i\infty, 2k+i\infty\). This clearly has magnitude

\[\leq x^{(2k-1)/k} \int_{2k-i\infty}^{2k+i\infty} M \cdot \left| \Gamma \left(\frac{1-z}{k} \right) \right| dz = c x^{(2k-1)/k} \]

and so finally, by (5)

\[\frac{1}{2} - f_k(e^{-x}) = cx + O(x^{2^{-1/k}}), \quad k > 1, \]

which yields A immediately.

Proof of B. Here \(k\) is even and so the integrand in (5) is analytic for all \(z, \Re z > 0\). We may then shift the contour to the right to the line \(\Re z = kM + 1\) (\(M = \text{half an odd integer}\) and no residues will be introduced.

We now estimate the resulting integral. We have

\[| \pi^{-x} x^{(s-1)/k} (1 - 2^{-s}) \xi(z) | < x^M, \]

\[| \Gamma(z) \cos \frac{\pi}{2} | \leq (kM)!, \]

\[\left| \Gamma \left(\frac{1-z}{k} \right) \right| = \left| \Gamma \left(-M + \frac{iy}{k} \right) \right|, \quad (y = \Im z), \]

\[\leq \left| i \left(\frac{1}{2} - \frac{iy}{k} \right) \right| \cdot \frac{1}{(M - \frac{1}{2})!} \]

\[= \left(\frac{\pi}{\cosh \frac{y}{k}} \right)^{1/2} \cdot \frac{1}{(M - \frac{1}{2})!} \]

and so the resulting integral is in magnitude

\[\leq c_1 \frac{(kM)!}{(M - \frac{1}{2})!} x^M \leq c_2 M^{(k-1)} M x^M. \]

If \(M\) is now chosen close to \(x^{-\alpha}/e, \alpha = 1/k - 1\) then the resulting estimate becomes
and B follows immediately. This completes the proof.

These results seem to point to the fact that of all the series $\sum (-1)^n \mu(n)$ the one which goes "fastest" to $1/2$ is $\sum (-1)^n n^3$. I wish to thank J. Korevaar for pointing out that this is actually the case, in the following sense:

We have seen that $|\sum (-1)^n n^3 - 1/2| \leq e^{-\phi(t)/t}$, where $\phi(t) \geq 0$ is unbounded as $t \to 1$. It is, in fact, a theorem of Korevaar [3], that if

$$\left| \sum (-1)^n \mu(n) - \frac{1}{2} \right| \leq e^{-\phi(t)/(1-t)}$$

where $\phi(t) \geq 0$ is unbounded as $t \to 1$. It is, in fact, a theorem of Korevaar [3], that if

$$\left| \sum A_n e^{-nu} \right| \leq w(u), \quad u > 0,$$

and

$$A_n \geq -1, \quad \liminf_{u \to 0^+} u \log w(u) = -\infty,$$

then $\sum A_n e^{-nu} = \text{constant}$. Changing u into $\log (1/t)$ immediately yields the result stated above.

Bibliography

Massachusetts Institute of Technology