A NOTE ON LACUNARY FOURIER SERIES

M. TOMIĆ

A theorem of Kolmogoroff [2, p. 73] states that if the Fourier series \(\mathfrak{S}[f] \) of an \(L \)-integrable function \(f(x) \) has an infinity of gaps \((n_r, n'_r) \) for which \(n'_r/n_r \geq \lambda > 1 \), (gaps of Hadamard's type), then \(s_{n_r} \to f \) for almost all \(x \), and it can be concluded that if \(f(x) \) is continuous then this is valid for all \(x \). From this theorem one can derive another theorem of Kolmogoroff: If \(f \in L^2 \) and \(n_{r+1}/n_r \geq \lambda > 1 \) then \(s_{n_r} \to f \) for almost all \(x \). Recently R. Gosselin [1] has proved a similar theorem with considerably larger subsequences \((n_r, n'_r) \), although with less precision in locating the indices.

In this note, we prove the following theorem for gaps where \(n'_r/n_r \to 1 \).

Theorem. Let \(f(x) \) be continuous at \(x = x_0 \), and let \(\mathfrak{S}[f] \) be a lacunary Fourier series with an infinity of gaps \((n_r, n'_r) \) for which \(n'_r - n_r \to \infty \), \(n'_r/n_r \to 1 \) and

\[
\omega\left(x_0, \frac{\pi}{n'_r - n_r}\right) \log \left(1 - \frac{n_r}{n'_r}\right) \to 0,
\]

with

\[
\omega(x_0, \delta) = \sup_{0 < |t| \leq \delta} \left\{ |f(x_0 + t) - f(x_0)| \right\};
\]

then

\(s_{n_r}(x_0) \to f(x_0) \).

It is well known [2, p. 45] that \(|f(x_0 + h) - f(x_0)| = o(\log 1/|h|)^{-1} \) does not ensure the convergence of \(\mathfrak{S}[f] \) at the point \(x_0 \). From the above theorem it follows that in this case \(\mathfrak{S}[f] \) converges if, for example, it is a lacunary Fourier series with \(n_r = \nu^{1+\epsilon}, n_{r+1} = (\nu + 1)^{1+\epsilon} \) for every \(\epsilon > 0 \).

Proof of Theorem. Take \(n_r = n, n'_r = m \) and denote by \(D_n(t) \) and \(K_n(t) \) the Dirichlet and Fejér kernels, i.e.

\[
D_n(t) = \frac{1}{2} + \sum_{k=1}^{n} \cos kt, \quad (n + 1)K_n(t) = \sum_{r=0}^{n} D_r(t) = \frac{\sin^2 (n + 1)t/2}{2 \sin^2 t/2}.
\]

From the identity

Received by the editors June 10, 1959 and, in revised form, July 2, 1959.
\[mK_{m-1}(t) - nK_{n-1}(t) = \sum_{r=n}^{m-1} D_r(t) \]
\[= (m - n)D_n(t) + \sum_{r=1}^{m-n-1} (m - n - r) \cos(n + r)t, \]

we have in virtue of the lacunarity of \(\mathcal{E}[f] \)

\[s_n - f(x_0) = \frac{1}{\pi} \int_0^\pi \phi(x_0, t)D_n(t) \]
\[= \frac{1}{\pi(m - n)} \int_0^\pi \phi(x_0, t)[mK_{m-1}(t) - nK_{n-1}(t)]dt, \]

with

\[\phi(x_0, t) = f(x_0 + t) + f(x_0 - t) - 2f(x_0). \]

The last integral can be written in the form

\[\frac{1}{2\pi(m - n)} \left\{ \int_0^{\pi/(m - n)} + \int_{\pi/(m - n)}^\pi + \int_0^\pi \right\} \phi(x_0, t) \frac{\sin^2 m \frac{t}{2} - \sin^2 n \frac{t}{2}}{\sin^2 \frac{t}{2}} dt \]

\[= I_1 + I_2 + I_3 \]
say. We have for \(I_1 \)

(2) \[|I_1| \leq \frac{2}{\pi(m - n)} \omega(x_0, \frac{\pi}{m - n}) \int_0^{\pi/(m - n)} |\sin^2 mt - \sin^2 nt| \frac{dt}{\sin^2 t}. \]

It remains to estimate

\[I_1' = \int_0^{\pi/(2(m - n))} \frac{|\sin^2 mt - \sin^2 nt|}{\sin^2 t} dt. \]

Taking \(mt = \tau, n/m = \xi \) we obtain

(3) \[I_1' \leq \frac{\pi^2}{4} m \int_0^{\pi/(2(m - n))} \frac{|\sin^2 \tau - \sin^2 \xi \tau|}{\tau^2} d\tau. \]

It follows from

\[\sin^2 \tau - \sin^2 \xi \tau = \sin(1 - \xi)\tau \sin(1 + \xi)\tau \]

and from

\[\sin^2 \tau \text{ and } \sin^2 \xi \tau \]
that the integral of the right-hand side of (2) is less than

$$\int_0^\infty |\sin (1 - \xi) t \sin (1 + \xi) t| \frac{dt}{r^2}$$

$$\leq 4(1 - \xi^2) \int_0^\infty \frac{dt}{(1 + (1 + \xi)t)(1 + (1 - \xi)t)}$$

$$= 2(1 - \xi^2) \frac{1}{\xi} \log \frac{1 + \xi}{1 - \xi}.$$

In virtue of (2), (3) and $\xi = n/m$ we have

$$|I_1| \leq \pi \frac{m + n}{n} \omega \left(x_0, \frac{\pi}{m - n}\right) \log \frac{m + n}{m - n}$$

and the last expression for $m/n \to 1$ is equivalent to the left-hand side of (1).

On the other hand, we obtain

$$|I_2| \leq \frac{2}{2\pi(m - n)} \pi^2 \omega(x_0, \delta) \frac{m - n}{\pi} = \omega(x_0, \delta),$$

and

$$|I_3| \leq \frac{C}{(m - n)\delta^2}$$

with an absolute constant C.

Given an ϵ we can choose δ so that $\omega(x_0, \delta) < \epsilon$ and we can suppose $(m - n)$ so large that $I_1 + I_2 + I_3 = o(1)$; this proves the theorem.

References

Institut Mathématique, Belgrade, Yugoslavia