
A NOTE ON CERTAIN POLYNOMIAL ALGEBRAS1

EMERY THOMAS

1. The algebras Ar. We discuss in this note the properties of cer-

tain polynomial algebras over an integral domain k, where k has

characteristic 2. Special cases of these algebras arise in Algebraic

Topology: first, as the mod 2 cohomology algebras of the classifying

spaces for real vector space bundles; and secondly, as a certain sub-

algebra (defined by C. T. C. Wall, see [4]) of the Thorn algebra of

nonoriented differentiable manifolds [3].

Let r denote either a positive integer or ». We set

Ar = k[xu - ■ ■ , Xi, - - - ; yu ■ ■ ■ , y,-, • ■ • ],

where 1 = i = r, if r is an integer ; 1 i*i < «, if r » «. Define a derivation

ß on Ar by setting

(1) ßXi = yh        ßyt = 0,        ß\k = 0;

(2) ß(uv) = (ßu)v + u(ßv), u,v G Ar.

Using the fact that k has characteristic 2, one may easily show

(3) 0 0/3 = 0.

We prove2 a simple result relating the structure of AT to ß, and

then apply this result to the examples mentioned above.

Denote by P the subalgebra of Ar spanned by all the monomials

in x2. Set

(4) S' = submodule of Ar spanned by all the elements pXi1 - ■ • xiayii

■ ■ ■ Jh-
rlere pEP, ii< ■ ■ ■ <*„, a^l; jiúji ■ ■ ■ Ikjb, b^O; and iiúji,

if &>0.

Theorem 1. Ar = P@ßS®S (k-module direct sum), where Kernel ß

= P®ßS, Image ß = ßS.

Proof. Let T be the submodule of Ar spanned by the elements

pxix ■ ■ ■ xicyh - - - yid, where £GP, ti<*»< ■ ■ ■ <*'«, c = 0; ji^j2

Ú - - - újd, d = l; and ji<ii, if c>0. Clearly, as a ^-module, Ar

= P(BT(&S. Hence, the splitting in Theorem 1 is obtained when we

show
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Lemma 1. T®S=ßS®S.

We prove this by first defining a ¿-module homomorphism, X, from

5 to T. It suffices to define X on the generating elements s = px^ ■ ■ ■

xi^yji " ' " Jib ot S (see (4)). For this we set

X(s) = pxh ■ ■ ■ Xiayhyh ■ ■ ■ yh ;

it is easily checked from the definition that \(s)CT. Now let

t = pXix ■ ■ ■ Xicyj1 ■ ■ ■ y¡d be an arbitrary generator of T. Let

s = pXj1xil ■ ■ •Xicyji • • • y¡d. Then, sCS and X(s)=f. Thus we have

shown

(5) X(S) = T.

The homomorphism X is related to the derivation ß in the following

way: again let s = px^ ■ ■ ■ xiayj1 • • • y¡h be a generator of S. Then

by (1), (2), and (3), we have ßp = 0, and

ßs = Xs + to.

Here
a

w = Z) Pxh • • • Xi, • • • Xijityh • • • y¡
t-2

if a = 2, and * means "omit." It follows from the definition that each

term in co belongs to 5. Hence,

(6) ßs = Xs mod S.

Therefore, by (5),

ßS = XS = T mod S.

Hence, ßS®S=T®S, completing the proof of Lemma 1.

In order to complete the proof of Theorem 1 we are left with show-

ing that Kernel ß = P®ßS (since this implies at once that Image ß

= ßS). By (1), (2), and (3), it is clear that P©/3SCKernel ß. The

proof of the theorem is thus complete when we show that ß restricted

to 5 is a monomorphism. But since Si~\T = 0, and X(5) = T, this will

follow at once from (6) and the following lemma.

Lemma 2. ~X is a monomorphism.

Now a ¿-basis for the submodule S consists of the totality of classes

s = pXix ■ ■ ■ Xi^y^ ■ ■ ■ yjh, where p is a monomial in the elements

x2 and the integers ii, ■ • ■ , jb satisfy the conditions given after (4).

Furthermore, each class Xi is a ¿-basis element for T. Hence, the

proof of Lemma 2 consists in showing that if s and 5' are distinct
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basis elements of S, then Xs and Xs' are distinct basis elements of T.

This follows fairly easily from the definitions of 5, T, and X; we leave

the details to the reader. With Lemma 2 proved, the proof of Theo-

rem 1 is then complete.

2. Examples. We give here some examples of algebras of type A r.

Denote by G„ the set of oriented «-dimensional subspaces of R*

(i? = real numbers), « = 1, 2, • • • . G„ may be topologized so as to

be a CW-complex and is then the base space of the classifying bundle,

•y", for oriented «-plane bundles (see [l] for details). It is well known

that

H*(Gn; Z2) = Z2[W2, Wz, ■ ■ ■ , Wn],

where Wi is the ith Stiefel-Whitney characteristic class of the bundle

yn. Denote by ß2 the Bockstein coboundary associated with the exact

sequence

0 -> Z2 -> Zi -» Z2 -> 0.

ß2 is a derivation (see (2)) and

ß2W2i = W2i+i, 1 ^ i ^ [m/2], m odd;

ß2W2i = W2i+i,       ß2Wn = 0, lgj< [n/2], n even.

Therefore, for each positive integer q,

(7) H*(G2q+i; Z2) is an algebra of type Aq, with respect to the field

k = Z2.

Since we may write H*(G2q; Z2) = Z2[W2q][W2, ■ ■ ■ , J^23-i], we

also have:

(8) H*(G2q; Z2) is an algebra of type A a_i, with respect to the integral

domain ¿ = Z2[TF2,,].

In another paper [2] we use the following result, obtained from

Theorem 1, to obtain a direct sum splitting of H*(Gn; Z).

Corollary 1. (a) In H*(G2q+i; Z2) we have

Kernel ß2 = Z2[W2, • • • , W2q] © Image ß2.

(b) In H*(G2q; Z2) we have

Kernel ß2 = Z2[W2, ■ ■ ■ , W2q-2, W2q] © Image ß2.

For a second example consider the algebra, 5Í, of cobordism classes

of (compact, differentiable) nonoriented manifolds. This is defined

by Thorn in [3]. C. T. C. Wall has recently defined a certain poly-

nomial subalgebra, SB, of 5H together with a derivation (boundary
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operator), d, defined on 20. Wall shows that the pair 2B, d is an

algebra of type A„. The integral domain k in this case is the poly-

nomial algebra Z2[coi, w2, • • • ], where each co,- is the (nonoriented)

cobordism class of the complex projective space P2i(C). We do not

give the details of this here as the example will be discussed more

fully in a forthcoming paper. There Theorem 1 will be used to give

generators and relations for the Thorn algebra, Q, of oriented mani-

folds (see [3]).

3. The nonoriented case. As remarked above the algebras AT de-

scribe abstractly the cohomology algebra H*(Gn; Z2). In a separate

paper [2] we will need analogous results for the cohomology algebra

H*(Gn; Z2). (Here Gn is the complex whose points are «-dimensional

nonoriented subspaces of P°°.) To this end we define

(9) Bq = Aq-i ® Z2[u,v] (1 á Î < »),

where ^4,_i is defined over the field k — Z2. (We set ;4o = Z2[l]). Thus,

Bq may be regarded as a mod 2 polynomial algebra on generators

Xi, x2, • • • , x3_i; yi, y2, • ■ • , yq-i\ u, v. We want to define a linear

endomorphism ß* on Bq with properties analogous to those of ß. Do

this by first defining a derivation ß on Z2[w, v] by

ßu — u2,        ßv = uv,

and then setting

ß*(a ® b) = ßa ® b + a ® ßb,

for aEAq-i, 6GZ2[m, v]. As a companion to Theorem 1 we then ob-

tain

Theorem 2. Kernel ß* = P*@ Image ß*, where

r      2 2 2,

P* = Z2|xi,  •  •  • , X5_l, V J.

The proof of this follows from a simple result about vector spaces.

Suppose we are given mod 2 vector spaces Vi and F2 each with a

linear endomorphism j3i, respectively |32. Define an endomorphism

ß on Vi<S>V2 by

ß(Vl ® V2)  = ßVi ® V2 + Vi (8) ßv2,

for i/,-G Vi- Suppose further that for i=l, 2,

Kernel /3¿ = A ¿ © Image ßiy

for some summand Ai(ZV{. A simple calculation then gives:
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Lemma 3. Kernel ß= (Ai®At) (B Image ß.

Now one easily verifies that

Kernel ¡3 = Z2[v2] © Image ß.

Thus, from Theorem 1 and Lemma 3, we obtain

Kernel ß* = (Z2[xx, • • • , xq-i] ® Z2[v ]) © Image ß*.

Identifying Z2[x2, • • • , x2_!]®Z2[z>2] with Z2[x2, • • • , x2_i, v2], we

obtain Theorem 2.
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