A NOTE ON CERTAIN POLYNOMIAL ALGEBRAS1

EMERY THOMAS

1. The algebras A_r . We discuss in this note the properties of certain polynomial algebras over an integral domain k, where k has characteristic 2. Special cases of these algebras arise in Algebraic Topology: first, as the mod 2 cohomology algebras of the classifying spaces for real vector space bundles; and secondly, as a certain subalgebra (defined by C. T. C. Wall, see [4]) of the Thom algebra of nonoriented differentiable manifolds [3].

Let r denote either a positive integer or ∞ . We set

$$A_r = k[x_1, \cdots, x_i, \cdots; y_1, \cdots, y_i, \cdots],$$

where $1 \le i \le r$, if r is an integer; $1 \le i < \infty$, if $r = \infty$. Define a derivation β on A_r by setting

(1)
$$\beta x_i = y_i, \quad \beta y_i = 0, \quad \beta \mid k = 0;$$

(2)
$$\beta(uv) = (\beta u)v + u(\beta v), \quad u,v \in A_r.$$

Using the fact that k has characteristic 2, one may easily show

$$\beta \circ \beta = 0.$$

We prove² a simple result relating the structure of A_r to β , and then apply this result to the examples mentioned above.

Denote by P the subalgebra of A_r spanned by all the monomials in x_i^2 . Set

(4) $S = submodule of A_r spanned by all the elements <math>px_{i_1} \cdot \cdot \cdot x_{i_a}y_{j_1} \cdot \cdot \cdot y_{j_b}$.

Here $p \in P$, $i_1 < \cdots < i_a$, $a \ge 1$; $j_1 \le j_2 \cdots \le j_b$, $b \ge 0$; and $i_1 \le j_1$, if b > 0.

THEOREM 1. $A_r = P \oplus \beta S \oplus S$ (k-module direct sum), where Kernel $\beta = P \oplus \beta S$, Image $\beta = \beta S$.

PROOF. Let T be the submodule of A_r spanned by the elements $px_{i_1} \cdots x_{i_c}y_{j_1} \cdots y_{j_d}$, where $p \in P$, $i_1 < i_2 < \cdots < i_c$, $c \ge 0$; $j_1 \le j_2 \le \cdots \le j_d$, $d \ge 1$; and $j_1 < i_1$, if c > 0. Clearly, as a k-module, $A_r = P \oplus T \oplus S$. Hence, the splitting in Theorem 1 is obtained when we show

Received by the editors August 21, 1959.

¹ This research has been partly supported by U. S. Air Force Contract AF 49(638)-79.

² I would like to thank the referee for his simplifications in the proof of Theorem 1.

LEMMA 1. $T \oplus S = \beta S \oplus S$.

We prove this by first defining a k-module homomorphism, λ , from S to T. It suffices to define λ on the generating elements $s = px_{i_1} \cdots x_{i_n}y_{j_1} \cdots y_{j_k}$ of S (see (4)). For this we set

$$\lambda(s) = p x_{i_2} \cdot \cdot \cdot x_{i_n} y_{i_1} y_{j_1} \cdot \cdot \cdot y_{j_b};$$

it is easily checked from the definition that $\lambda(s) \in T$. Now let $t = px_{i_1} \cdot \cdot \cdot \cdot x_{i_2}y_{j_1} \cdot \cdot \cdot \cdot y_{j_d}$ be an arbitrary generator of T. Let $s = px_{j_1}x_{i_1} \cdot \cdot \cdot x_{i_2}y_{j_2} \cdot \cdot \cdot y_{j_d}$. Then, $s \in S$ and $\lambda(s) = t$. Thus we have shown

$$\lambda(S) = T.$$

The homomorphism λ is related to the derivation β in the following way: again let $s = px_{i_1} \cdots x_{i_a}y_{j_1} \cdots y_{j_b}$ be a generator of S. Then by (1), (2), and (3), we have $\beta p = 0$, and

$$\beta s = \lambda s + \omega$$
.

Here

$$\omega = \sum_{i=2}^{a} p x_{i_1} \cdot \cdot \cdot \hat{x}_{i_i} \cdot \cdot \cdot x_{i_a} y_{i_i} y_{j_1} \cdot \cdot \cdot y_{j_b}$$

if $a \ge 2$, and ^ means "omit." It follows from the definition that each term in ω belongs to S. Hence,

$$\beta s \equiv \lambda s \mod S.$$

Therefore, by (5),

$$\beta S \equiv \lambda S \equiv T \mod S$$
.

Hence, $\beta S \oplus S = T \oplus S$, completing the proof of Lemma 1.

In order to complete the proof of Theorem 1 we are left with showing that Kernel $\beta = P \oplus \beta S$ (since this implies at once that Image $\beta = \beta S$). By (1), (2), and (3), it is clear that $P \oplus \beta S \subset \text{Kernel } \beta$. The proof of the theorem is thus complete when we show that β restricted to S is a monomorphism. But since $S \cap T = 0$, and $\lambda(S) = T$, this will follow at once from (6) and the following lemma.

LEMMA 2. λ is a monomorphism.

Now a k-basis for the submodule S consists of the totality of classes $s = px_{i_1} \cdot \cdot \cdot x_{i_a}y_{j_1} \cdot \cdot \cdot y_{j_b}$, where p is a monomial in the elements x_i^2 and the integers $i_1, \cdot \cdot \cdot , j_b$ satisfy the conditions given after (4). Furthermore, each class λs is a k-basis element for T. Hence, the proof of Lemma 2 consists in showing that if s and s' are distinct

basis elements of S, then λs and $\lambda s'$ are distinct basis elements of T. This follows fairly easily from the definitions of S, T, and λ ; we leave the details to the reader. With Lemma 2 proved, the proof of Theorem 1 is then complete.

2. **Examples.** We give here some examples of algebras of type A_r . Denote by \tilde{G}_n the set of oriented n-dimensional subspaces of R^{∞} (R=real numbers), $n=1, 2, \cdots$. \tilde{G}_n may be topologized so as to be a CW-complex and is then the base space of the classifying bundle, $\tilde{\gamma}^n$, for oriented n-plane bundles (see [1] for details). It is well known that

$$H^*(\tilde{G}_n; Z_2) = Z_2[\tilde{W}_2, \tilde{W}_3, \cdots, \tilde{W}_n],$$

where \tilde{W}_i is the *i*th Stiefel-Whitney characteristic class of the bundle $\tilde{\gamma}^n$. Denote by β_2 the Bockstein coboundary associated with the exact sequence

$$0 \rightarrow Z_2 \rightarrow Z_4 \rightarrow Z_2 \rightarrow 0$$
.

 β_2 is a derivation (see (2)) and

$$\beta_2 \tilde{W}_{2i} = \tilde{W}_{2i+1}, \qquad 1 \leq i \leq \lfloor n/2 \rfloor, n \text{ odd};$$

$$\beta_2 \tilde{W}_{2i} = \tilde{W}_{2i+1}, \qquad \beta_2 \tilde{W}_n = 0, \qquad 1 \leq i < \lfloor n/2 \rfloor, n \text{ even.}$$

Therefore, for each positive integer q,

(7) $H^*(\tilde{G}_{2q+1}; Z_2)$ is an algebra of type A_q , with respect to the field $k = Z_2$.

Since we may write $H^*(\tilde{G}_{2q}; Z_2) = Z_2[\tilde{W}_{2q}][\tilde{W}_2, \cdots, \tilde{W}_{2q-1}]$, we also have:

(8) $H^*(\tilde{G}_{2q}; Z_2)$ is an algebra of type A_{q-1} , with respect to the integral domain $k = Z_2[\tilde{W}_{2q}]$.

In another paper [2] we use the following result, obtained from Theorem 1, to obtain a direct sum splitting of $H^*(\tilde{G}_n; Z)$.

Corollary 1. (a) In $H^*(\tilde{G}_{2q+1}; Z_2)$ we have

Kernel
$$\beta_2 = Z_2[\tilde{W}_2^2, \cdots, \tilde{W}_{2q}^2] \oplus Image \beta_2$$
.

(b) In $H^*(\tilde{G}_{2q}; Z_2)$ we have

Kernel
$$\beta_2 = Z_2[\tilde{W}_2^2, \cdots, \tilde{W}_{2q-2}^2, \tilde{W}_{2q}] \oplus Image \beta_2.$$

For a second example consider the algebra, \mathfrak{N} , of cobordism classes of (compact, differentiable) nonoriented manifolds. This is defined by Thom in [3]. C. T. C. Wall has recently defined a certain polynomial subalgebra, \mathfrak{M} , of \mathfrak{N} together with a derivation (boundary

operator), ∂ , defined on \mathfrak{B} . Wall shows that the pair \mathfrak{B} , ∂ is an algebra of type A_{∞} . The integral domain k in this case is the polynomial algebra $Z_2[\omega_1, \omega_2, \cdots]$, where each ω_i is the (nonoriented) cobordism class of the complex projective space $P_{2^i}(C)$. We do not give the details of this here as the example will be discussed more fully in a forthcoming paper. There Theorem 1 will be used to give generators and relations for the Thom algebra, Ω , of *oriented* manifolds (see [3]).

3. The nonoriented case. As remarked above the algebras A_r describe abstractly the cohomology algebra $H^*(\tilde{G}_n; Z_2)$. In a separate paper [2] we will need analogous results for the cohomology algebra $H^*(G_n; Z_2)$. (Here G_n is the complex whose points are *n*-dimensional nonoriented subspaces of R^{∞} .) To this end we define

$$(9) B_q = A_{q-1} \otimes Z_2[u,v] (1 \leq q < \infty),$$

where A_{q-1} is defined over the field $k = Z_2$. (We set $A_0 = Z_2[1]$). Thus, B_q may be regarded as a mod 2 polynomial algebra on generators $x_1, x_2, \dots, x_{q-1}; y_1, y_2, \dots, y_{q-1}; u, v$. We want to define a linear endomorphism β^* on B_q with properties analogous to those of β . Do this by first defining a derivation $\bar{\beta}$ on $Z_2[u, v]$ by

$$\bar{\beta}u = u^2, \qquad \bar{\beta}v = uv,$$

and then setting

$$\beta^*(a \otimes b) = \beta a \otimes b + a \otimes \bar{\beta}b,$$

for $a \in A_{q-1}$, $b \in \mathbb{Z}_2[u, v]$. As a companion to Theorem 1 we then obtain

THEOREM 2. Kernel $\beta^* = P^* \oplus Image \beta^*$, where

$$P^* = Z_2[x_1^2, \cdots, x_{q-1}^2, v^2].$$

The proof of this follows from a simple result about vector spaces. Suppose we are given mod 2 vector spaces V_1 and V_2 each with a linear endomorphism β_1 , respectively β_2 . Define an endomorphism β on $V_1 \otimes V_2$ by

$$\beta(v_1 \otimes v_2) = \beta v_1 \otimes v_2 + v_1 \otimes \beta v_2,$$

for $v_i \in V_i$. Suppose further that for i = 1, 2,

Kernel
$$\beta_i = A_i \oplus \text{Image } \beta_i$$
,

for some summand $A_i \subset V_i$. A simple calculation then gives:

LEMMA 3. Kernel $\beta = (A_1 \otimes A_2) \oplus Image \beta$.

Now one easily verifies that

Kernel
$$\bar{\beta} = Z_2[v^2] \oplus \text{Image } \bar{\beta}$$
.

Thus, from Theorem 1 and Lemma 3, we obtain

Kernel
$$\beta^* = (Z_2[x_1^2, \cdots, x_{q-1}^2] \otimes Z_2[v^2]) \oplus \text{Image } \beta^*.$$

Identifying $Z_2[x_1^2, \dots, x_{q-1}^2] \otimes Z_2[v^2]$ with $Z_2[x_1^2, \dots, x_{q-1}^2, v^2]$, we obtain Theorem 2.

BIBLIOGRAPHY

- 1. J. Milnor, Lectures on characteristic classes, Mimeographed notes, Princeton University, 1957.
- 2. E. Thomas, On the cohomology of the real Grassmann complexes and the characteristic classes of n-plane bundles, Trans. Amer. Math. Soc., to appear.
- 3. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. vol. 28 (1954) pp. 17-86.
- 4. C. T. C. Wall, Note on the cobordism ring, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 329-331.

University of California, Berkeley