A NOTE ON CERTAIN POLYNOMIAL ALGEBRAS!
EMERY THOMAS

1. The algebras A,. We discuss in this note the properties of cer-
tain polynomial algebras over an integral domain k, where % has
characteristic 2. Special cases of these algebras arise in Algebraic
Topology: first, as the mod 2 cohomology algebras of the classifying
spaces for real vector space bundles; and secondly, as a certain sub-
algebra (defined by C. T. C. Wall, see [4]) of the Thom algebra of
nonoriented differentiable manifolds [3].

Let r denote either a positive integer or «. We set

Ar=k[xl’...’xi’...;yl’...’yi,...]’

where 1 £¢<7r,if ris an integer; 1 £7< =, if r= «. Define a derivation
B on A, by setting

(1) Bri=y;, Byi=0, Blk=0;

2 B(uv) = (Bu)v + u(Bv), uy € A4,.

Using the fact that k& has characteristic 2, one may easily show
©) BoB=0.

We prove? a simple result relating the structure of 4, to 8, and
then apply this result to the examples mentioned above.

Denote by P the subalgebra of 4, spanned by all the monomials
in x2. Set

(4) S=submodule of A, spanned by all the elements pxi, - - - x: ¥,
C O Vi

Here pEP, 1< + + + <ig, a21; 1Zje - -+ ZJb, b20; and 4, =51,
if 5>0.

THEOREM 1. A, =P®BSBS (k-module direct sum), where Kernel 3
=P®BS, Image 3=PS.

ProoF. Let T be the submodule of A4, spanned by the elements
PXiy * ¢ XiYiy 0 * Vig Where pEP, 1 <0< -+ - <1, ¢20; 1=/
< .-+ Sjs, d21; and ji <4y, if ¢>0. Clearly, as a k-module, 4.
=P®TS. Hence, the splitting in Theorem 1 is obtained when we
show
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LEMMA 1. THS=8S®S.

We prove this by first defining a k-module homomorphism, \, from
S to T. It suffices to define \ on the generating elements s=px;, - - -
X:i¥i, * - - Y of S (see (4)). For this we set

M) = ps, + * - BiYi¥in * ** Yin
it is easily checked from the definition that N(s)ET. Now let
t=px; - - %Yj -+ - Yi, be an arbitrary generator of 7. Let

S=px;X5,  * XiYiy * -+ ¥i, Then, s&€S and N(s) =¢. Thus we have
shown

() AS) = T.

The homomorphism M is related to the derivation 8 in the following
way: again let s=px; - - - x;y;, - + - ¥;, be a generator of S. Then
by (1), (2), and (3), we have Bp=0, and

Bs = As + w.

Here

a
@ = D0 priy v Bi o BLYiYa Y,
fme2
if 222, and ~ means “omit.” It follows from the definition that each
term in w belongs to .S. Hence,

(6) Bs = As mod S.
Therefore, by (5),
BS =AS =T modS.

Hence, BS®S=T@&.S, completing the proof of Lemma 1.

In order to complete the proof of Theorem 1 we are left with show-
ing that Kernel =P ®BS (since this implies at once that Image B
=£S). By (1), (2), and (3), it is clear that P®BS CKernel B. The
proof of the theorem is thus complete when we show that g restricted
to S is a monomorphism. But since SNT =0, and \(S) =T, this will
follow at once from (6) and the following lemma.

LEMMA 2. \ s a monomorphism.

Now a k-basis for the submodule S consists of the totality of classes
S=pxi + ¢ - XiYi * ¢+ Vipy Where p is a monomial in the elements
x¢ and the integers 4, - - -, jp satisfy the conditions given after (4).
Furthermore, each class As is a k-basis element for 7. Hence, the
proof of Lemma 2 consists in showing that if s and s’ are distinct
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basis elements of S, then As and \s’ are distinct basis elements of T.
This follows fairly easily from the definitions of S, T, and \; we leave
the details to the reader. With Lemma 2 proved, the proof of Theo-
rem 1 is then complete.

2. Examples. We give here some examples of algebras of type 4,.
Denote by G, the set of oriented zn-dimensional subspaces of R*
(R=real numbers), n=1, 2, - - - . G, may be topologized so as to
be a CW-complex and is then the base space of the classifying bundle,
4n, for oriented n-plane bundles (see [1] for details). It is well known
that

H*(Gn; Zz) = ZZ[W2y W& ] Wn]?

where W is the ith Stiefel-Whitney characteristic class of the bundle
4" Denote by B, the Bockstein coboundary associated with the exact
sequence

0-2,—22,—2,—0.
B2 is a derivation (see (2)) and
BoWai = Wai, 1 =i = [n/2], nodd;
BeWai = Wiy, BW, = 0, 1 =i < [n/2], neven.
Therefore, for each positive integer ¢,
(7) H*(Gag41; Z2) s an algebra of type A, with respect to the field
k=Zg.
Since we may write H*(Gayq; Zo) =Za[Wao] [Wa, - - -, Waga], we
also have:
(8) H*(Gag; Z») is an algebra of type A o1, with respect to the integral
domain k=Z,[W,,].
In another paper [2] we use the following result, obtained from
Theorem 1, to obtain a direct sum splitting of H*(G,; Z).

COROLLARY 1. (a) In H*(Gye11; Z2) we have

Kernel By = Z2[W:, cee, W:q] @ Image Bs.
(b) In H*(G:q; Zs) we have

Kernel 8; = Zz[W:, CIEIEIN W:q_z, Waq| ® Image Bs.

For a second example consider the algebra, N, of cobordism classes
of (compact, differentiable) nonoriented manifolds. This is defined
by Thom in [3]. C. T. C. Wall has recently defined a certain poly-
nomial subalgebra, 8, of N together with a derivation (boundary
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operator), 9, defined on . Wall shows that the pair B, 9 is an
algebra of type A.,. The integral domain & in this case is the poly-
nomial algebra Z;[wi, ws, + - - |, where each w; is the (nonoriented)
cobordism class of the complex projective space P.:(C). We do not
give the details of this here as the example will be discussed more
fully in a forthcoming paper. There Theorem 1 will be used to give
generators and relations for the Thom algebra, Q, of oriented mani-

folds (see [3]).

3. The nonoriented case. As remarked above the algebras 4, de-
scribe abstractly the cohomology algebra H*(G,; Z,). In a separate
paper [2] we will need analogous results for the cohomology algebra
H*(G,; Z2). (Here G, is the complex whose points are n-dimensional
nonoriented subspaces of R*.) To this end we define

&) By = A¢1 ® Zo[u, 1] (1=2¢< @),

where A4 ,_; is defined over the field k=Z,. (We set 4o=2Z,[1]). Thus,
B, may be regarded as a mod 2 polynomial algebra on generators
X1, X2, © ¢ ¢y Xge1) V1, Vo, * ¢, Ye1; %, 9. We want to define a linear
endomorphism 8* on B, with properties analogous to those of 8. Do
this by first defining a derivation § on Z;[«, v] by

Bu = u?,  Bv = uy,
and then setting
B*(a®b) =BaQb+ a® B,

for a€A4 .1, bEZ,[u, v]. As a companion to Theorem 1 we then ob-
tain

THEOREM 2. Kernel 3* = P*® Image 3*, where
2 2 2
P* = Z2[x1: oty X1, 0 ]°

The proof of this follows from a simple result about vector spaces.
Suppose we are given mod 2 vector spaces V; and V, each with a
linear endomorphism i, respectively B.. Define an endomorphism
Bon V;®V: by

B(v1 @ v2) = Bv1 ® v2 + 1 @ Py,
for v;E€ V;. Suppose further that for =1, 2,
Kernel 8; = 4; @ Image 8;,

for some summand 4;CV,. A simple calculation then gives:
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LeEMMA 3. Kernel B=(A1Q@A2) ® Image B.
Now one easily verifies that
Kernel § = Z;[v2] ® Image B.

Thus, from Theorem 1 and Lemma 3, we obtain

Kernel §* = (Zs[a1, - - - , %p-1] ® Za[o']) ® Image 6*.

Identifying Zs[x?, - - -, 22_,]®Z:[v?] with Z,[«}, - - -, x2_}, v2], we
obtain Theorem 2.
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