A NOTE ON METRIC DENSITY OF SETS OF REAL NUMBERS

N. F. G. MARTIN

Casper Goffman has shown that the set of points at which the metric density of a set of real numbers exists but is not zero or one is a set of the first category. As a partial converse to this result he showed that for every F_σ set of measure zero there exists a measurable set whose density exists at every point of the F_σ and has the value $1/2$. In this note we extend the last named theorem of Goffman to the following:

THEOREM. Let Z and γ be given where Z is an F_σ set of measure zero and γ is a real number such that $0 < \gamma < 1$. Then there exists a measurable set S such that the metric density of S exists at every point of Z and has the value γ.

PROOF. We shall assume that $Z \subset (0, 1)$. Let $Z = \bigcup_{k=1}^{\infty} Z_k$ where Z_k is closed and of measure zero for $k = 1, 2, \ldots$.

We shall define four sequences, $\{G_k\}$, $\{T_k\}$, $\{E_k\}$, and $\{F_k\}$ of sets, where $G_{k+1} \subset G_k$ and $T_{k+1} \subset T_k$, as follows:

Let $G_1 = (0, 1)$, and G_k be an open set which contains $Z - \bigcup_{n=1}^{k-1} Z_n$. Define T_k to be the set $G_k - Z_k$ and require $G_{k+1} \subset T_k$. Since Z_k is closed, T_k is open and consists of a countable number of disjoint open intervals $I_{kj} = (a_{kj}, b_{kj})$. Since $m(I_{kj}) < 1$, where m denotes Lebesgue measure, there exists an integer N_{kj} such that

$$\frac{1}{N_{kj} + 1} \leq \frac{1}{2} m(I_{kj}) \leq \frac{1}{N_{kj}}.$$

Let $\alpha_n = a_{kj} + (1/2)m(I_{kj}) = b_{kj} - (1/2)m(I_{kj}) = \beta_n$ for $n = N_{kj}$ and for $n \geq N_{kj} + 1$ let

$$\alpha_n = a_{kj} + \frac{1}{n}, \quad \beta_n = b_{kj} - \frac{1}{n},$$

$$A_n^1(k, j) = \{x: \alpha_n^{kj} \leq x < \alpha_n^{kj}\},$$

$$A_n^2(k, j) = \{x: \beta_n^{kj} \leq x < \beta_n^{kj}\}.$$

The sets $A_n^i(k, j), i = 1, 2; n \geq N_{kj} + 1$ are disjoint and

1 This paper forms a part of the author's doctoral dissertation written at Iowa State College under the direction of Professor H. P. Thielman.
A NOTE ON METRIC DENSITY OF SETS OF REAL NUMBERS

\[I_{kj} = \bigcup_{n=1}^{\infty} \left[A^1_n(k, j) \ A^2_n(k, j) \right]. \]

For each of the sets \(A_{n}(k, j) \) let \(A_{n}^{i,kj} \) be any measurable set contained in \(A_{n}(k, j) \) for which \(m(A_{n}^{i,kj}) = \gamma m(A_{n}(k, j)) , \ i = 1, 2. \) Let \(A_{n}^{i,F_n,kj} \) be defined by \(A_{n}^{i,F_n,kj} = A_{n}^{i}(k, j) - A_{n}^{i,kj}. \) Then

\[m(A_{n}^{i,F_n,kj}) = (1 - \gamma)m(A_{n}^{i}(k, j)). \]

Finally let

\[E_{k} = \bigcup_{j=1}^{\infty} \bigcup_{n>N_{kj}} \left(A_{n}^{1,kj} \cup A_{n}^{2,kj} \right), \]

\[F_{k} = \bigcup_{j=1}^{\infty} \bigcup_{n>N_{kj}} \left(A_{n}^{1,F_n,kj} \cup A_{n}^{2,F_n,kj} \right). \]

The sets \(E_{k} \) and \(F_{k} \) are disjoint and \(T_{k} = E_{k} \cup F_{k}. \)

Returning to the sets \(G_{k} \) restrict \(G_{k+1} \) so that

\[m(G_{k+1} \cap A_{n}^{i,kj}) \leq \frac{1}{n^k} m(A_{n}^{i,kj}), \]

(1) \[m(G_{k+1} \cap A_{n}^{i,F_n,kj}) \leq \frac{1}{n^k} m(A_{n}^{i,F_n,kj}) \]

for \(i = 1, 2; n \geq N_{kj} + 1; j = 1, 2, \ldots, \) which is possible since \(Z \) has measure zero.

The set \(S \) defined by

\[S = \bigcup_{k=1}^{\infty} (E_{k} - G_{k+1}) \]

has density \(\gamma \) at every point of \(Z. \)

For, let \(s \) be any element in \(Z, \) and let \(h \) be the smallest positive integer such that \(s \in Z_{h} \subset G_{h}. \) Let \(I \) be an open interval containing \(s \) and contained in \(G_{h}. \) Restricting \(m(I) < 1/2 \) there exists an integer \(p > 1 \) such that

(2) \[\frac{1}{p + 1} \leq m(I) < \frac{1}{p} . \]

Since \(s \in Z_{h}, s \in T_{h} \) and by (2) if an end point of \(I \) falls in \(A_{n}^{i}(h, j) \) then \(n \geq p \) and

\[m(A_{n}^{i}(h, j)) = \frac{1}{n(n - 1)} \leq \frac{2}{p(p + 1)} . \]
The interval I consists of the following:
1. A set H composed of disjoint sets $A^i_n(h, j)$ where $i = 1, 2$ and $n \geq p$.
2. A set J which consists of two open or half open intervals, possibly empty, at the ends of I each of whose lengths does not exceed $2/p(p + 1)$ so that $m(J) \leq 4/p(p + 1)$.
3. A set $N = Z \cap I$ of measure zero.

We will show first that

\[(\gamma - 4/p)m(I) \leq m(H \cap E_h) \leq \gamma m(I),\]
\[(1 - \gamma - 4/p)m(I) \leq m(H \cap F_h) \leq (1 - \gamma)m(I). \]

We have

\[m(H \cap E_h) = \sum m(A^i_n E_{hj}^i) = \gamma \sum m(A^i_n(h, j)) = \gamma m(H) \leq \gamma m(I),\]
where the summation is taken over all n, j and i for which $A^i_n(h, j) \subset I$.

Also, $m(H \cap F_h) = (1 - \gamma)m(H) \leq (1 - \gamma)m(I)$.

From the maximum measure of J and inequality (2) we have $m(J) \leq (4/p)m(I)$. Thus since $m(I) = m(H) + m(J)$, $m(H) \geq (1 - 4/p)m(I)$. Therefore,

\[m(H \cap E_h) \geq (\gamma - 4/p)m(I)\]

and

\[m(H \cap F_h) \geq (1 - \gamma - 4/p)m(I).\]

Thus inequalities (3) are satisfied.

Next it will be shown that for all positive integers q

\[m(G_{h+q} \cap H \cap E_h) \leq m(H \cap F_h)/p^q,\]
\[m(G_{h+q} \cap H \cap F_h) \leq m(H \cap E_h)/p^q.\]

From the inequalities (1) and the fact that $n \geq p$,

\[m(G_{h+q} \cap H \cap E_h) = \sum m(G_{h+q} \cap A^i_n E_{hj}^i)\]
\[\leq \sum m(A^i_n E_{hj}^i)/n^q \leq m(H \cap E_h)/p^q\]

where the summations are taken over all n, j, i for which $A^i_n(h, j) \subset I$.

The second inequality in (4) is obtained in the same way. Since $G_{h+q} \supset E_{h+q}$, from (4) and (3) we obtain

\[m(E_{h+q} \cap H \cap E_h) \leq \gamma m(I)/p^q,\]
\[m(E_{h+q} \cap H \cap F_h) \leq (1 - \gamma)m(I)/p^q,\]
for \(q = 1, 2, \ldots \). Now
\[
I = (H \cap E_h) \cup (H \cap F_h) \cup N \cup J,
\]
so
\[
m \left(I \cap \bigcup_{k=h}^{\infty} E_k \right) \leq m(H \cap E_h) + \sum_{k=h+1}^{\infty} m(E_k \cap H \cap E_h) \\
+ \sum_{k=h+1}^{\infty} m(E_k \cap H \cap F_h) + m(J) \\
< \left(\gamma + \frac{5}{p} - 1 \right) m(I).
\]

Since \(I \supset (H \cap E_h) \cup (H \cap F_h) \) and \(E_h \cap F_h = \emptyset \),
\[
I \cap (E_h - G_{h+1}) \supset (H \cap E_h) - (G_{h+1} \cap H \cap E_h)
\]
and
\[
m(I \cap (E_h - G_{h+1})) > (\gamma - 5/p) m(I).
\]

However,
\[
I \cap (E_h - G_{h+1}) \subset I \cap S \subset I \cap \bigcup_{k=h}^{\infty} E_k
\]
so that application of inequalities (5) and (6) gives
\[
\gamma - \frac{5}{p} < \frac{m(I \cap S)}{m(I)} < \gamma + \frac{5}{p - 1}.
\]

Bibliography

IOWA STATE COLLEGE