tinct classes. According to our bound there are at least two more such splittings obtainable in this way.

REFERENCES

REED COLLEGE

A DETERMINANT CONNECTED WITH FERMAT’S LAST THEOREM

L. CARLITZ

Put

\[
\Delta_n = \begin{vmatrix}
1 & C_{n,1} & C_{n,2} & \cdots & C_{n,n-1} \\
C_{n,n-1} & 1 & C_{n,1} & \cdots & C_{n,n-2} \\
& & & \ddots & \cdots \\
& & & & 1 \\
C_{n,1} & C_{n,2} & C_{n,3} & \cdots & 1
\end{vmatrix},
\]

where the \(C_{n,r}\) are binomial coefficients. Bachmann showed that if

(1) \(x^p + y^p + z^p = 0\) \((p \nmid xyz)\)

is solvable then \(\Delta_{p-1} \equiv 0 \pmod{p^3}\). However Lubelski showed that for \(p \geq 7\), \(\Delta_{p-1}\) is divisible by \(p^8\), while E. Lehmer proved that \(\Delta_{p-1}\) is divisible by \(p^{p-2}q_2\), where \(q_2 = (2p^2 - 1)/p\); also \(\Delta_n = 0\) if and only if \(n = 6k\). For references see [2].

The writer [1] has determined the residue of \(\Delta_{p-1} \pmod{p^{p-1}}\). The result is that

Received by the editors December 1, 1959.

1 Research supported by National Science Foundation, Grant G-9425.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[\Delta_{p-1} \equiv p^{p-2} \prod_{a=1}^{p-2} \{ (1 + a)q(1 + a) - a^q(a) \} \pmod{p^{p-1}}, \]

where

\[q(a) = \frac{a^{p-1} - 1}{p}, \]

or if we prefer,

\[\Delta_{p-1} \equiv \prod_{a=1}^{p-2} ((a + 1)^p - a^p - 1) \pmod{p^{p-1}}. \]

Now it is known (see [3, p. 564] for references) that when (1) is solvable

\[q(r) \equiv 0 \pmod{p} \]

for all primes \(r \leq 43 \) and therefore for all integral \(r \leq 46 \). Mrs. Lehmer noted that it follows from

\[q(2) \equiv 0 \pmod{p} \]

that if (1) is solvable then \(\Delta_{p-1} \) is divisible by \(p^{p-1} \). In view of (2) it seems plausible that when (1) is solvable \(\Delta_{p-1} \) is divisible by a considerably higher power of \(p \); however since the modulus in (2) is only \(p^{p-1} \) such a result cannot be inferred without further proof.

Put \(C_r = C_{p-1,r} \) for \(0 \leq r \leq p-1 \) and \(C_r = C_s \) for \(r \equiv s \pmod{p-1} \). Then

\[\Delta_{p-1} = | C_{s-r} | \quad (r, s = 1, \ldots, p-1). \]

Let \(e \) be an arbitrary non-negative integer and consider the determinant

\[D_e = \left| s^{pe^r} \right| \quad (r, s = 1, \ldots, p-1). \]

Then

\[D_e \equiv D_0 \pmod{p}; \]

since

\[D_0 = (p-1)! \prod_{1 \leq r < s \leq p-1} (r - s), \]

it follows that

\[D_e \not\equiv 0 \pmod{p}. \]

Similarly the determinant.
\(D'_r = \left| r^{-p^s} \right| \quad (r, s = 1, \ldots, \phi - 1) \)

is a rational number with both numerator and denominator prime to \(\phi \). Consequently

\[\Delta'_{r-1} = D'_r \Delta_{r-1} D_s \]

and \(\Delta_{r-1} \) are divisible by the same power of \(\phi \).

We have

\[D'_r \Delta_{r-1} D_s = |A_{rs}| \quad (r, s = 1, \ldots, \phi - 1) \]

where

\[
A_{rs} = \sum_{j,k=1}^{p-1} r^{-p^s j} C_{k-j} S^{j \phi^k} = \sum_{i=1}^{p-1} C_t \sum_{k=j-i} r^{-p^s j} S^{j \phi^k} \equiv \sum_{i=1}^{p-1} C_t \sum_{j=1}^{p-1} (r^{-p^s j}) S^{j \phi^i} \pmod{\phi^{s+1}}.
\]

Since

\[
\sum_{j=1}^{p-1} (r^{-p^s j}) S^i \equiv (\phi - 1) \delta_{rs} \pmod{\phi^{s+1}},
\]

where \(\delta_{rs} \) is the Kronecker delta, we get

\[
A_{rs} \equiv (\phi - 1) \delta_{rs} \sum_{i=1}^{p-1} C_{p-1,i} S^{p^i} \equiv (\phi - 1) \delta_{rs} \{ (1 + S^{p^1})^{p-1} - 1 \} \pmod{\phi^{s+1}}.
\]

Therefore (3) and (4) imply

\[\Delta'_{r-1} \equiv - (\phi - 1)^{p-1} \prod_{r=1}^{p-2} \{ (1 + r^{p^s})^{p-1} - 1 \} \pmod{\phi^{s+1}}. \]

Incidentally it is easily verified that

\[D'_r D_s \equiv (\phi - 1)^{p-1} \pmod{\phi^{s+1}}, \]

so that

\[\Delta'_{r-1} \equiv (\phi - 1)^{p-1} \Delta_{r-1} \pmod{\phi^{s+1}}. \]

From (5) and (6) we get
A DETERMINANT CONNECTED WITH FERMAT'S LAST THEOREM

(7) \[\Delta_{p-1} = -p^{p-2} \prod_{r=1}^{p-2} q(1 + r^p) \pmod{p^{p+1}}. \]

Now if (1) is solvable we have

\[q(a) \equiv 0 \pmod{p} \quad (2 \leq a \leq 46). \]

Also if

\[a^p \equiv a \pmod{p^2} \]

it follows at once that

\[(1 + a^p)^{p-1} \equiv a^{p-1} \equiv 1 \pmod{p^2} \quad (a < 46), \]

so that

\[q(1 + a^p) \equiv 0 \pmod{p} \quad (a < 46), \]

for all \(e \geq 0 \). Hence (since \(p > 50 \)) (7) yields

\[\Delta_{p-1} \equiv c p^{p+43} \pmod{p^{p+1}}, \]

where \(c \) is some integer. If we take

\[e = p + 42 \]

we obtain the following

Theorem. If the equation

\[x^p + y^p + z^p = 0 \]

is solvable in rational integer \(x, y, z \) each prime to \(p \) then

\[\Delta_{p-1} \equiv 0 \pmod{p^{p+43}}. \]

We remark that the theorem is meaningful only for \(p \equiv -1 \pmod{6} \) since the determinant \(\Delta_{p-1} \) is zero when \(p \equiv 1 \pmod{6} \).

References

Duke University