
Indiana University

CONDITIONS IMPLYING CONTINUITY OF FUNCTIONS

Edward Halfar

In the study of functions on certain types of spaces, the question naturally arises as to what additional conditions may imply that the functions are continuous. Several papers, mainly [2; 3; 4], have considered this problem. In this note, some further results of this type are developed.

To avoid repetition, a function f will be at least on a Hausdorff space X onto a Hausdorff space Y with additional restrictions stated as needed. Also f is compact preserving (connected) if when K is a compact (connected) subset of X, $f(K)$ is a compact (connected) subset of Y; f has closed point inverses if for each $y \in Y$, $f^{-1}(y)$ is closed and f is monotone if $f^{-1}(y)$ is connected. The rest of the terminology is standard.

In [1], it was shown that if X is regular, Y compact and if f is closed with closed point inverses, f is continuous. Combining this with Theorem 3.1 of [4], one has the result:

Theorem 1. If f is a closed monotone connected function on a regular space X onto a compact space Y, then f is continuous.

It is easy to see that without the assumption that Y is compact, the conclusion need no longer hold.

Theorem 2. If X is locally compact, then if f is compact preserving and point inverses are closed, f is continuous.

Consider any point $x \in X$. Since X is locally compact, x has a neighborhood U_0 with a compact closure $\text{Cl} \ U_0$. Because continuity is a local property, one need only consider f restricted to $\text{Cl} \ U_0$. On $\text{Cl} \ U_0$, f is closed and $f(\text{Cl} \ U_0)$ is compact. Hence the conditions of Theorem 3 of [1] are satisfied and f is continuous at x.

Received by the editors July 17, 1959.
If X is not locally compact, then f may not be continuous. The function in the first example on [3, p. 162] is such an instance.

Definition 1. A function f has at worst a removable discontinuity at $x \in X$ if there is a $y \in Y$ such that for each neighborhood V of y, there is a neighborhood U of x such that $f(U - \{x\}) \subseteq V$.

If X satisfies the first axiom of countability, this definition is equivalent to Definition 3.2 of [4]. With this interpretation, the conditions of Theorem 3.6 of [4] may be relaxed somewhat.

Theorem 3. If X is locally connected and f is connected, then f is continuous at x_0 if and only if f has at worst a removable discontinuity at x_0.

With only minor change, the proof given by Pervin and Levine applies here.

Theorem 4. If X is regular and f is a closed function with closed point inverses, then if f has a removable discontinuity at $x_0 \in X$, f is continuous at x_0.

If x_0 is isolated in X, the result is obviously true. Assume that x_0 is nonisolated and f is not continuous at x_0. Let y be the point of Y determined by the hypothesis. Since $y \not \in f(x_0)$ and $f^{-1}(y)$ is closed, a neighborhood U of x_0 exists such that $f^{-1}(y) \cap \text{Cl } U = \emptyset$. Then $y \in f(\text{Cl } U)$ and because $f(\text{Cl } U)$ is closed, a neighborhood V of y exists for which $V \cap f(\text{Cl } U) = \emptyset$. There is a neighborhood W of x_0 such that $f(W - \{x_0\}) \subseteq V$. Since x_0 is nonisolated, $U \cap W - \{x_0\} \neq \emptyset$. Hence $\emptyset \neq f(W - \{x_0\}) \cap f(\text{Cl } U) \subseteq V \cap f(\text{Cl } U)$, a contradiction.

Definition 2. A space X will be said to have property K at a point x if for each infinite subset A having x as an accumulation point, there is a compact subset of $A \cup \{x\}$ which has x as an accumulation point.

Theorem 5. If X has property K at x_0, then if f is compact preserving and has closed point inverses, f is continuous at x_0.

It can be assumed that x_0 is nonisolated. Suppose f is not continuous at x_0 and that \mathcal{U} is the family of neighborhoods of x_0. Then for some neighborhood V of $f(x_0)$ and for each $U \in \mathcal{U}$, there is an x_u such that $x_u \in U \cap f^{-1}(Y - V)$. Let $A = \{x_u \mid U \in \mathcal{U}\}$. Then A is infinite, for x_0 is an accumulation point of A. By hypothesis, there is an infinite compact subset K of $A \cup \{x_0\}$. By Theorem 2, f restricted to K is continuous. However $f(K - \{x_0\}) \subseteq Y - V$ but $f(x_0) \in V$, a contradiction.\(^1\)

\(^1\) This is the referee's revision of the author's original proof.
Theorem 6. If X is locally connected with property K at each point and if f is compact preserving and connected, then f is continuous.

It need only be shown that point inverses are closed.

Let $y_0 \in Y$ and suppose $x_0 \in C f^{-1}(y_0) - f^{-1}(y_0)$. Denote the family of connected neighborhoods of x_0 by C and the family of neighborhoods of y_0 by U. Select disjoint open neighborhoods V and U_0 of $f(x_0)$ and y_0 respectively. For each $C \in C$ and $U \in U$, let the point $y(U, C) \in f(C) \cap U \cap U_0 - \{y_0\}$ and the point $x(U, C) \in f^{-1}(y(U, C)) \cap C$. The set A of all such $x(U, C)$ is infinite and has x_0 as an accumulation point. By hypothesis, $A \cup \{x_0\}$ has an infinite compact subset K with x_0 as an accumulation point. Note that $x_0 \in K$. Let g denote the function f restricted to K. Then $S = g(K) - \{g(x_0)\} = g(K) \cap (Y - V)$ is an infinite compact set and must have an accumulation point z. If $x = g^{-1}(z)$ is isolated in K, then $K - \{x\}$ and hence $S - \{z\}$ are compact, a contradiction. Assume then that for each accumulation point of S, its inverse in K is an accumulation point of K.

Let A be the set of accumulation points of K, excluding x_0. For each $x \in A$, select disjoint open neighborhoods W_x and R_x of x and x_0 respectively. Each $K - W_x$ is compact and each $B_x = g(K - W_x) \cap S$ is a closed non-null subset of S. The family $\mathcal{B} = \{B_x | x \in A\}$ has the finite intersection property, for suppose the contrary. There would exist a finite number of neighborhoods W_{x_1}, \ldots, W_{x_n} such that $K - \{x_0\} \subseteq \bigcup_{i=1}^n W_{x_i}$, but since for each W_{x_i}, there is a neighborhood R_{x_i} of x_0 disjoint from W_{x_i}, $\bigcap_{i=1}^n R_{x_i}$ is a neighborhood of x_0 disjoint from $\bigcup_{i=1}^n W_{x_i}$, a contradiction. Hence $\bigcap \{B_x | B_x \in \mathcal{B}\} \neq \emptyset$, and for each $y \in \bigcap \{B_x | B_x \in \mathcal{B}\}$, $t = g^{-1}(y)$ is an isolated point of K.

Let T be the set of such points t in K. Since T is open in K, for each $x \in A$ the set $K - (W_x \cup T)$ is compact and non-null. Then $\bigcap \{g(K - (W_x \cup T)) | x \in A\} \cap S$ is a null intersection of non-null closed subsets of a compact set, and there is a finite number of neighborhoods W_{x_1}, \ldots, W_{x_m} which covers $K - (T \cup \{x_0\})$. Since x_0 is an accumulation point of K, T must be infinite and hence $T \cup \{x_0\}$ has a compact infinite subset H whose only accumulation point is x_0. Then $g(H) \cap S$ is an infinite compact subset of S and must have an accumulation point z, a contradiction since $g^{-1}(z)$ is an isolated point of K.

Thus it follows that $x_0 \in f^{-1}(y_0)$ and $f^{-1}(y_0)$ is closed. By Theorem 5, f is continuous.

Spaces satisfying the first axiom of countability obviously have property K. In conclusion there is given an example of a space in
which property K holds but local countability does not.

Let $X = \cup_{n=-\infty}^{\infty} S_n$ be a planar set of points where for

$n \leq 1$, \[S_n = \{(x, y)/0 \leq x \leq n/(n + 1), y = x(n + 1)/n\}; \]

$n \geq -1$, \[S_n = \{(x, y)/0 \geq x \geq n/(1 - n), y = x(1 - n)/n\} \text{ and} \]

$S_0 = \{(x, y)/0 = x, 0 \leq y \leq 1\}$.

For any point $(x, y) \neq (0, 0)$, let the neighborhoods of (x, y) be defined by relativization of the Euclidean topology of the plane. At $(0, 0)$, define a base as composed of sets of the form $\cup_{n=-\infty}^{\infty} E_n$, where for each integer n, $E_n \subset S_n$ is a half-open interval with $(0, 0)$ as the endpoint. Then the first axiom of countability is not satisfied at $(0, 0)$, but the space does have property K there.

References

University of Nebraska