An algorithm for determining whether a given binary matroid is graphic.
HTML articles powered by AMS MathViewer
- by W. T. Tutte
- Proc. Amer. Math. Soc. 11 (1960), 905-917
- DOI: https://doi.org/10.1090/S0002-9939-1960-0117173-5
- PDF | Request permission
References
- W. T. Tutte, A class of Abelian groups, Canadian J. Math. 8 (1956), 13–28. MR 75198, DOI 10.4153/CJM-1956-004-9
- W. T. Tutte, A homotopy theorem for matroids. I, II, Trans. Amer. Math. Soc. 88 (1958), 144–174. MR 101526, DOI 10.1090/S0002-9947-1958-0101526-0 —, A homotopy theorem for matroids, II, Trans. Amer. Math. Soc. vol. 88 (1958) pp. 161-174.
- W. T. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–552. MR 101527, DOI 10.1090/S0002-9947-1959-0101527-3
- Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509–533. MR 1507091, DOI 10.2307/2371182
- L. Auslander and H. M. Trent, Incidence matrices and linear graphs, J. Math. Mech. 8 (1959), 827–835. MR 0105371, DOI 10.1512/iumj.1959.8.58052
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 11 (1960), 905-917
- MSC: Primary 05.00
- DOI: https://doi.org/10.1090/S0002-9939-1960-0117173-5
- MathSciNet review: 0117173