On the compactness of the structure space of a ring
HTML articles powered by AMS MathViewer
- by R. L. Blair and L. C. Eggan
- Proc. Amer. Math. Soc. 11 (1960), 876-879
- DOI: https://doi.org/10.1090/S0002-9939-1960-0148708-4
- PDF | Request permission
References
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- Robert L. Blair, Stone’s topology for a binary relation, Duke Math. J. 22 (1955), 271–280. MR 70146 I. S. Gál, On a generalized notion of compactness. I, Nederl. Akad. Wetensch. Proc. Ser. A vol. 60 (1957) pp. 421-430.
- N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 333–338. MR 13138, DOI 10.1073/pnas.31.10.333 —, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37, Providence, 1956.
- Oystein Ore, Some studies on closure relations, Duke Math. J. 10 (1943), 761–785. MR 9595
- M. Schreiber, Compactness of the structure space of a ring, Proc. Amer. Math. Soc. 8 (1957), 684–685. MR 87641, DOI 10.1090/S0002-9939-1957-0087641-3
Bibliographic Information
- © Copyright 1960 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 11 (1960), 876-879
- MSC: Primary 16.98
- DOI: https://doi.org/10.1090/S0002-9939-1960-0148708-4
- MathSciNet review: 0148708