A Moore space on which every real-valued continuous function is constant
HTML articles powered by AMS MathViewer
- by Steve Armentrout
- Proc. Amer. Math. Soc. 12 (1961), 106-109
- DOI: https://doi.org/10.1090/S0002-9939-1961-0120615-3
- PDF | Request permission
References
- Edwin Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503–509. MR 17527, DOI 10.2307/1969089
- F. Burton Jones, Moore spaces and uniform spaces, Proc. Amer. Math. Soc. 9 (1958), 483–486. MR 93757, DOI 10.1090/S0002-9939-1958-0093757-9
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), no. 1, 262–295 (German). MR 1512258, DOI 10.1007/BF01208659
- C. W. Vickery, Axioms for Moore spaces and metric spaces, Bull. Amer. Math. Soc. 46 (1940), 560–564. MR 1909, DOI 10.1090/S0002-9904-1940-07260-X
Bibliographic Information
- © Copyright 1961 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 12 (1961), 106-109
- MSC: Primary 54.00
- DOI: https://doi.org/10.1090/S0002-9939-1961-0120615-3
- MathSciNet review: 0120615