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The questions answered in this paper suggest themselves naturally.

The first lemma is a consequence of a result of R. C. Buck.

Lemma. Let f be a function of a complex variable and A a Toeplitz

matrix such that |/(x„)} is A-summable whenever {xn\ converges. Then

f is continuous.

Proof. Every subsequence of {x„} converges, so that every sub-

sequence of {/(xn)} is .<4-summable, by hypothesis. By [l], applied

to complex sequences, {/(x„)} is actually convergent. (For the proof

of [l] can be modified to apply to complex sequences. Or, see [2,

Theorem 2], for a proof in a slightly more general context.) Let

{x„} converge to x. The sequence Xi, x, x2, x, • • • is also convergent,

so that the sequence /(xi), /(x), /(x2), /(x), • • • converges. This

shows that {/(xn)} converges to f(x) whenever {x„} converges to x.

Thus the continuity of / is proved.

The converse of the lemma is a consequence of the definition of

Toeplitz matrix. The lemma is of course also true for real-valued

functions of a real variable. The same comment applies also after the

following theorem.

Theorem. Let A = («,-„), 1 =î,m < °°, be a Toeplitz matrix, and f a

function of a complex variable, such that if {xn} is a bounded (C, 1)-

summable sequence, then {/(x„)} is A-summable. Then f is linear. If in

addition f is not the constant function, then A sums every bounded

(C, \)-summable sequence to its (C, 1) sum.

Proof. Every convergent sequence is a bounded (C, l)-summable

sequence. Thus / satisfies the hypotheses of the lemma. Hence / is

continuous. We will prove that f((a+b)/2) = (f(a)+f(b))/2 for all

a and b. It is well known that a continuous function with this property

is linear.

Consider the sequence a, b, a, b, • • • , which is a bounded (C, 1)-

summable sequence. In fact, we may interpolate any number of terms

(a+6)/2 between successive terms of this sequence, infinitely many

if we wish, and still have a bounded (C, l)-summable sequence. To

prove this, let us examine the average of the first « terms of such an

interpolated sequence. These first n terms consist of rb's, r or r + 1 a's,
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and n — 2r or n — 2r—l((a + b)/2)'s, say. The average of these w terms

is therefore equal to (l/n)(r(a + b) + (w — 2r)(a + b)/2) or

(l/n)(r(a+b)+a+(n-2r-l)(a+b)/2), that is, to (a+6)/2 or

((a-\-b)/2) (1 — 1/w) +a/w. As w approaches infinity, the Cesaro means

of such an interpolated sequence therefore converge to (a-\-b)/2. This

proves the assertion. By the hypothesis of this theorem, we conclude

that any sequence f(a), f(b), f(a), f(b), ■ ■ ■ , with any number of

f((a-\-b)/2)'s interpolated into it is ¿4-summable. We shall use this

fact shortly.

If / is the constant function, there is nothing more to prove.

Throughout the remainder of the proof, / will be nonconstant. Let

a, b be such that/(a)=p, f(b)=q, with pr^q. The sequence p, q,

p, q, ■ ■ • is ¿4-summable by hypothesis. Then the sequence p — q, 0,

p — q, 0, • • • is also ¿4-summable. For this sequence is obtained from

the preceding sequence by subtracting the sequence q, q, q, • ■ ■ .

Upon dividing each term of p — q, 0, p — q, 0, • • • by p — q, we con-

clude that the sequence 1, 0, 1, 0, • • • is ¿4-summable. In other

words, lim^oo ^„ odd a¿„ exists; call it r. Since for every Toeplitz

matrix, lim;,« X^=ia«=l> we must have lim,-..,», ^„ even ain = 1 — r.

Now consider any sequence f(a), f(b), f(a), f(b), • ■ ■ . We shall

interpolate /((a + &)/2)'s into this sequence in such a way that we

obtain a new sequence, which we know to be ¿4-summable by the

above argument, and yet which has a subsequence of its sequence of

auxiliary means under A convergent to/((a+Z>)/2), and another sub-

sequence of its sequence of auxiliary means under A convergent to

rf(a)-\-(l —r)f(b). But since the sequence of auxiliary means under A

of the interpolated sequence converges, and since a convergent se-

quence has but one limit point, we must conclude that these two

limit points coincide.

Let M be the maximum of the absolute values of the three numbers

f(a),f(b),f((a-^-b)/2). Let A7! be even and so large that ^»>^i lai»l
<1/2M. Then for any sequence {c„} composed only of terms chosen

irom f (a), f(b), f((a-\-b) /2), whose first Ni terms are the first Ni terms

of the sequence f(a) ,f(b), f(a) ,f(b), ■ ■ ■ , we observe that ^„"«i d¡„c»

differs in absolute value from f(a) ^n odd ain +/(&) 52„ even a\n by less

than 2il7-l/2il7=l. Let ii = l and choose i2>i\ and so large that

~YJl=\ |ß*2,n| <l/2Af. We now start interpolating terms f((a+b)/2).

Let A2 be even, >Ni, and so large that X/«>^2 lo¿2.*l < 1/417. Then

any sequence {cn} composed only of terms/(a), f(b), f((a-\-b)/2),

whose terms from Ai + 1 up to N2 are all equal to f((a+b)/2), has

the property that 2^ñ°=i a»2.«c>> differs in absolute value from

f((a+b)/2) ¿„"„i öia,n by less than M- 1/2M+2M- 1/4M = 1. We shall



i96i] summability-preserving functions 75

now find i3>i2 and so large that ]C^-i |a»3,»l <l/4ikf. Now choose

Ns even, >N2, and so large that ¿2n>N¡ |a¿3,n| <1/8M. We now

leave in our sequence {cn} that we are constructing, terms a, b, a,

b, ■ ■ ■ starting from A^+l and stopping at N3. Any sequence \cn)

with such terms in the indicated positions and its remaining terms

chosen from among f(a), f(b), f((a-\-b)/2), has the property that

¿2n-i ai3,nCn differs in absolute value from f(a) ¿2n odd *<„»

+f(b) ¿» even ah,n by less than M-l/4M+2M-l/8Jkf=l/2. Choose
ù>i3 and so large that ¿2m*-i |ö«4,»| <l/4Af. Then choose N¿ even,

>N3, and so large that ¿2n>N, \a,it,n\ <1/8M. Now interpolate

f((a + b)/2) from the A^-p-l to the N4. position. Any sequence \cn\

with f((a-{-b)/2) in these positions and its remaining terms chosen

from among/(a),f(b),f((a-\-b)/2), has the property that ]C<T-i ait,nCn

differs in absolute value from f((a + b)/2) ¿2m-1 ah,n °y less than

Af-l/4M+2M-l/8Af=l/2. Continuing in this fashion, we finally

obtain a sequence {cn} with the property that

2-i a¿at-i,nCn       J\fl)    2—i   ahk-im        f{b)    ¿_i   ai2ii-i,n < — >
k

and

V t (a + h\ V
2-1 öt2i,ncn /I I  ¿j  0,l2h,n

i»=l \      4      /  n=l

<

* - 1, 2,

* = 1, 2,

Given any e>0, if k>2/e and also so large that

<
4M"

¿2   «iik-i.n - (1 - r) <
AM

2—1 Q*îkm        *
n=.l

< -;

2M

then we have

¿2 ahk-x.nCn - rf(a) - (1 - r)f(b)   < —- + y + y = e>
k=i |        2 4 4

" /a +'S\ I      «       «

From this, we conclude that the subsequence of the auxiliary means

of \cn} corresponding to those rows of A indexedby îm-i, &= 1, 2, • • -,

converges to rf(a) + (l — r)f(b). Similarly, the subsequence of the

auxiliary means of {c„} under A corresponding to those rows of A
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indexed by i2k, k = \, 2, • • • , converges to/((<z + i>)/2). Since a con-

vergent sequence has but one limit point, we conclude that/((<z + £>)/2)

— rf(a)-\-(\— r)f(b). Starting with the sequence b, a, b, a, • ■ ■ , we

likewise conclude that f((b+a)/2) =rf(b) +(I-r)f(a). Thus for all a

and b, rf(a)-\-(\—r)f(b)=rf(b)-\-(\—r)f(a). Since / is nonconstant,

we can choose a, b such that f(a) ^ f(b). Then r(f(a) — f(b))

= (l-r)(f(a)-f(b)). Thus r=\-r, or r = l/2. Then f((a + b)/2)

= (l/2)/(a) + (l -1/2)/(6), that is,/((o + 6)/2) = (f(a)+f(b))/2 for all
a and b. Since/ is continuous, we conclude that/ is linear.

To prove the last part of the theorem, let f(z) =cz-\-d with c^O.

The hypothesis of the theorem tells us that }cx„+d} is ¿4-summable

whenever \xn\ is a bounded (C, l)-summable sequence. Subtracting

the sequence d, d, d, ■ ■ ■ from this sequence and dividing by c, we

find that {x„} is ¿4-summable whenever {x„} is a bounded (C, 1)-

summable sequence. Theorem 1 of [3] is now exactly what one needs

to conclude that A sums every bounded (C, l)-summable sequence

to its (C, 1) sum. This concludes the proof of the theorem.

The theorem is of course false for summability methods (as opposed

to (C, 1)) whose convergence field is too small.

A question which arises in connection with the theorem has been

answered by Professor H. Hanani: Namely, if the Toeplitz matrix A

sums every bounded (C, l)-summab!e sequence, does it sum every

(C, l)-summable sequence? The answer is "no." For let a,-„=l/z,

l^B^í, a,-,i2=l/í, a,-„ = 0 otherwise. The matrix ¿4 = (<z¿„) is a

Toeplitz matrix which sums every bounded (C, l)-summable se-

quence, as is easy to see. But the sequence {(—l)n+1w1/2},w = 1,2, • • -,

is (C, l)-summable (to zero), whereas the sequence of its odd auxiliary

means under A converges to +1, its even ones to — 1. Another ques-

tion whose answer is "no" is this: if the Toeplitz matrix A sums every

bounded (C, l)-summable sequence, does it give the (C, 1) sum for

any (C, l)-summable sequence which it happens to sum? For let

A = (ain) with ain= í/i, í^n^i, a¿,¿2= (—1)'+1T/í, ö,-„ = 0 otherwise.

Then the same sequence as used above is summable by this matrix

to 1, not zero.
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