A set is a $3$ cell if its cartesian product with an arc is a $4$ cell
HTML articles powered by AMS MathViewer
- by R. H. Bing
- Proc. Amer. Math. Soc. 12 (1961), 13-19
- DOI: https://doi.org/10.1090/S0002-9939-1961-0123303-2
- PDF | Request permission
References
- R. H. Bing, The Kline sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946), 644–653. MR 16645, DOI 10.1090/S0002-9904-1946-08614-0
- R. H. Bing, A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$, Ann. of Math. (2) 65 (1957), 484–500. MR 92961, DOI 10.2307/1970058
- R. H. Bing, Necessary and sufficient conditions that a $3$-manifold be $S^{3}$, Ann. of Math. (2) 68 (1958), 17–37. MR 95471, DOI 10.2307/1970041
- R. H. Bing, The cartesian product of a certain non-manifold and a line is $E_{4}$, Bull. Amer. Math. Soc. 64 (1958), 82–84. MR 97034, DOI 10.1090/S0002-9904-1958-10160-3
- R. H. Bing, The cartesian product of a certain nonmanifold and a line is $E^{4}$, Ann. of Math. (2) 70 (1959), 399–412. MR 107228, DOI 10.2307/1970322 —, A surface $S$ is tame in ${E^3}$ if ${E^3}- S$ is locally simply connected at each point of $S$, Abstract 546-74, Notices Amer. Math. Soc. vol. 5 (1958) pp. 180-181. M. L. Curtis, Corollary to a proof due to Bing, Abstract 571-13, Notices Amer, Math. Soc. vol. 7 (1960) p. 842.
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979–990. MR 27512, DOI 10.2307/1969408
- James Glimm, Two Cartesian products which are Euclidean spaces, Bull. Soc. Math. France 88 (1960), 131–135. MR 125573
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- A. Kirkor, A remark about Cartesian division by a segment, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 379–381. MR 0097033 V. Poénaru, Les décompositions de l’hypercube en produit topologique, Bull. Soc. Math. France, vol. 88 (1960) pp. 113-129.
- Frank Raymond, Separation and union theorems for generalized manifolds with boundary, Michigan Math. J. 7 (1960), 7–21. MR 120638 R. H. Rosen, ${E^4}$ is the cartesian product of a totally non-Euclidean space and ${E^1}$, Abstract 563-1, Notices Amer. Math. Soc. vol. 6 (1959) p. 641.
- M. Szumbarski, Sur la décomposition des eléments euclidiens en produits cartésiens, Rec. Math. [Mat. Sbornik] N.S. 16(58) (1945), 39–42 (French, with Russian summary). MR 0013296 J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. Oxford vol. 6 (1935) pp. 268-279.
- R. L. Wilder, A converse of the Jordan-Brouwer separation theorem in three dimensions, Trans. Amer. Math. Soc. 32 (1930), no. 4, 632–657. MR 1501556, DOI 10.1090/S0002-9947-1930-1501556-8
- R. L. Wilder, On the properties of domains and their boundaries in $E^n$, Math. Ann. 109 (1934), no. 1, 273–306. MR 1512894, DOI 10.1007/BF01449139
- Gail S. Young Jr., On the factors and fiberings of manifolds, Proc. Amer. Math. Soc. 1 (1950), 215–223. MR 34582, DOI 10.1090/S0002-9939-1950-0034582-7
Bibliographic Information
- © Copyright 1961 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 12 (1961), 13-19
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1961-0123303-2
- MathSciNet review: 0123303