A GENERALIZATION OF MAILLET'S DETERMINANT
AND A BOUND FOR THE FIRST FACTOR OF THE
CLASS NUMBER1

L. CARLITZ

1. Let \(p \) be a prime \(\geq 3 \). For \((r, p) = 1 \) define \(r' \) by means of \(rr' \equiv 1 \pmod{p} \); also let \(R(r) \) denote the least positive residue of \(r \) \(\pmod{p} \). Maillet defined the determinant \(D_p \) of order \((p-1)/2 \) by means of

\[
D_p = \left| R(rs') \right| \quad (r, s = 1, \cdots, (p-1)/2)
\]

and raised the question whether \(D_p \neq 0 \) for all \(p \). Malo computed \(D_p \) for \(p \leq 13 \) and conjectured that

\[
D_p = (-p)^{(p-3)/2}.
\]

For references see [6, pp. 340–342].

It was shown in [3] that

\[
D_p = \pm p^{(p-3)/2} h,
\]

where \(h \) denotes the first factor of the class number of the cyclotomic field \(\mathbb{Q}(e^{2\pi i/p}) \), and \(R \) denotes the rational field. Thus \(D_p \neq 0 \) but Malo's conjecture (2) is seen to be incorrect. It should be noted that \(D_p \) had been discussed earlier by Turnbull [7].

The first step in the proof of (3) is the easily proved relation

\[
D_p' = -\frac{1}{2} D_p,
\]

where

\[
D_p' = \left| R(rs') - \frac{p}{2} \right| \quad (r, s = 1, \cdots, (p-1)/2).
\]

Since

\[
R(r) - \frac{p}{2} = p \left(\frac{r}{p} - \left[\frac{r}{p} \right] - \frac{1}{2} \right),
\]

(5) suggests the generalization

\[
D_p^{(n)} = \left| p^n B_n \left(\frac{rs'}{p} \right) \right| \quad (r, s = 1, \cdots, (p-1)/2),
\]

Received by the editors April 25, 1960.

1 Supported in part by National Science Foundation, Grant G-9425.

256
where $\bar{B}_n(x)$ is the Bernoulli function defined by

\begin{equation}
\bar{B}_n(x) = B_n(x) \quad (0 \leq x < 1), \quad \bar{B}_n(x + 1) = \bar{B}_n(x);
\end{equation}

$B_n(x)$ is the Bernoulli polynomial of degree n. It is easily verified that for $n = 1$ the determinant $D_p^{(n)}$ reduces to D_p.

We shall require the known formula

\begin{equation}
\bar{B}_n(-x) = (-1)^n \bar{B}_n(x),
\end{equation}

which is an easy consequence of (7).

Now let g denote a primitive root (mod p) and put

\begin{equation}
E_p^{(n)} = \left| p^n \bar{B}_n \left(\frac{g^{i-j}}{p} \right) \right| \quad (i, j = 0, 1, \ldots, (p - 3)/2).
\end{equation}

Except for sign and order the numbers

$$\bar{B}_n \left(\frac{1}{p} \right), \quad \bar{B}_n \left(\frac{g}{p} \right), \ldots, \bar{B}_n \left(\frac{g^{(p-1)/2}}{p} \right)$$

are the same as the numbers

$$\bar{B}_n \left(\frac{1}{p} \right), \quad \bar{B}_n \left(\frac{2}{p} \right), \ldots, \bar{B}_n \left(\frac{p - 1}{2p} \right).$$

It accordingly follows that

\begin{equation}
D_p^{(n)} = \pm E_p^{(n)}.
\end{equation}

It is now convenient to treat separately the cases n even and n odd. When n is even it follows from (8) that $E_p^{(n)}$ is a circulant. If α denotes a primitive $(p - 1)$th root of unity, then we have

\begin{equation}
E_p^{(n)} = \prod_{i=0}^{(p-1)/2} \sum_{j=0}^{(p-1)/2} p^n \bar{B}_n \left(\frac{g^i}{p} \right) \alpha^{i+j} = \left(\frac{p^n}{2} \right)^{(p-1)/2} \prod_{i=0}^{(p-1)/2} \sum_{j=0}^{p-2} \bar{B}_n \left(\frac{g^i}{p} \right) \alpha^{i+j}.
\end{equation}

If $\chi(r)$ denotes a typical multiplicative character (mod p) we may write this in the form

\begin{equation}
E_p^{(n)} = \left(\frac{p^n}{2} \right)^{(p-1)/2} \prod_{\chi(-1)=1}^{-1} \sum_{r=1}^{p-1} B_n \left(\frac{r}{p} \right) \chi(r) \quad (n \text{ even}),
\end{equation}

the product extending over the $(p - 1)/2$ character such that $\chi(-1) = 1$.

In the next place, when \(n \) is odd, \(E_p^{(n)} \) is not a circulant. However,
\[
C_p^{(n)} = \left| \frac{p^n B_n \left(\frac{g^{i-j}}{p} \right)}{\alpha^{i-j}} \right| \quad (i, j = 0, 1, \ldots, (p - 3)/2)
\]
is a circulant and clearly
\[
C_p^{(n)} = E_p^{(n)}.
\]
Also we have
\[
C_p^{(n)} = \prod_{i=0}^{(p-3)/2} \sum_{j=0}^{(p-3)/2} p^n B_n \left(\frac{g^i}{p} \right) \alpha^{(2i+1)j}
\]
which may be written in the form
\[
C_p^{(n)} = \left(\frac{p^n}{2} \right)^{(p-1)/2} \prod_{\chi \equiv (-1)^{-1}} \sum_{r=1}^{p-1} B_n \left(\frac{r}{p} \right) x(r) \quad (n \text{ odd}).
\]
Leopoldt [5] has defined a generalized Bernoulli number \(B_x^n \), where \(\chi \) denotes a primitive character \((\text{mod} \ f)\). We shall be interested only in the case \(f = p \), when
\[
B_x^n = p^{n-1} \sum_{r=1}^{p-1} \chi(r) B_n \left(\frac{r}{p} \right).
\]
Making use of (14), it is evident that (11) and (13) reduce to
\[
E_p^{(n)} = \left(\frac{p}{2} \right)^{(p-1)/2} \prod_{\chi \equiv (-1)^{-1}} B_x^n \quad (n \text{ even}),
\]
\[
C_p^{(n)} = \left(\frac{p}{2} \right)^{(p-1)/2} \prod_{\chi \equiv (-1)^{-1}} B_x^n \quad (n \text{ odd}).
\]
Let \(K \) denote the cyclotomic field \(k(e^{2\pi i/p}) \) and \(K_0 \) the maximal real subfield of \(K \). If \(\zeta_K(s), \zeta_{K_0}(s) \) denote the Dedekind zeta functions of \(K \) and \(K_0 \), respectively, then [5, p. 135]
\[
\zeta_{K_0}(n) = (-1)^{m((n/2)+1)} \frac{(2\pi)^{mn^2} d_K^{1/2} B_n}{2^md_{K_0}(n!)^m} \quad (n \text{ even}),
\]
\[
\frac{\zeta_K(n)}{\zeta_{K_0}(n)} = (-1)^{m(n+1)/2} \frac{(2\pi)^{mn} (d_K/d_{K_0})^{(1/2)n} B_n^{K/K_0}}{2^m(n!)^m} \quad (n \text{ odd}),
\]
where \(m = (p-1)/2 \), \(d_K, d_{K_0} \) denote the discriminants of the respective fields and

\[
B^n_{K_0} = \prod_{x(-1)=1} B^n_x \quad (n \text{ even}),
\]

\[
B^n_{K/K_0} = \prod_{x(-1)=-1} B^n_x \quad (n \text{ odd});
\]

in view of (15) and (16) \(B^n_{K_0} \) and \(B^n_{K/K_0} \) are rational. Comparing with (15) and (16) and making use of (10) and (12), it follows in particular that

\[
D_p^{(n)} \neq 0 \quad (n = 1, 2, 3, \ldots).
\]

Returning to (15) and (16), it is clear that to find the highest power of \(p \) dividing \(D_p^{(n)} \) it is necessary to have more precise information about the arithmetic nature of \(B^n_x \). Now by the final theorem in Léopoldt’s paper [5] (see also [2, Theorem 3]) if

\[
\frac{n}{p-1} = \frac{r}{d} \quad ((r, d) = 1),
\]

and if the character \(\chi \) is of order \(d \), then the denominator of \(B^n_{\chi} \) is divisible by the first power of a certain prime ideal \(p \) of the first degree of the field \(k(\chi) \). As \(\chi \) runs through the characters of order \(d \), \(p \) runs through the set of conjugate prime ideals. It follows that the denominators of the products occurring in (15) and (16) are divisible by the first power of \(p \). Consequently \(D_p^{(n)} \) is divisible by at least \(p^{(p-3)/2} \) for all \(n \geq 1 \).

2. Kummer [4, p. 473] stated that \(h \), the first factor of the class number of the cyclotomic field \(R(e^{2\pi i/p}) \), satisfies

\[
h \sim \frac{p^{(p+3)/4}}{2^{(p-3)/2}p^{(p-1)/2}} = P.
\]

Some years ago Ankeny and Chowla [1] proved the weaker result

\[
\lim_{p \to \infty} \frac{\log h/P}{\log p} = 0.
\]

It may be of interest to point out that the following upper bound for \(h \):

\[
h < 2^{-(p-1)/4}(p - 1)^{(p+3)/4} < 2^{-(p-1)/4}p^{(p+3)/4},
\]

can be obtained very easily by making use of (3) above.
Let
\[D = \begin{vmatrix} a_{rs} \end{vmatrix} \quad (r, s = 1, \ldots, n) \]
be an arbitrary real determinant of order \(n \) and put
\[\sum_{r=1}^{n} a_{rs}^2 = a_r^2 \quad (r = 1, \ldots, n); \]
then by Hadamard's lemma [8, p. 212]
\[|D| \leq a_1 a_2 \cdots a_n. \]
In particular if \(|a_{rs}| < M \) then
\[|D| \leq n^{n/2} M^n. \]
Applying (23) to the determinant (1) we get
\[|D_p| \leq \left(\frac{p-1}{2} \right)^{(p-1)/2} (p-1)^{(p-1)/2} = 2^{-(p-1)/4} (p-1)^{3(p-1)/4}. \]
Clearly (3) and (24) imply (21).
We can improve (21) as follows. It is proved in [3] that for \(p > 5 \)
\[D_p = \pm p^{(p-1)/2} D_p', \]
where
\[D_p' = \begin{vmatrix} \left\lfloor \frac{rs}{p} \right\rfloor - \left\lfloor \frac{(r-1)s}{p} \right\rfloor \end{vmatrix} \quad (r, s = 3, 4, \ldots, (p-1)/2). \]
The elements of \(D_p' \) consist of zeros and ones. Also we have
\[\sum_{r=3}^{(p-1)/2} \left(\left\lfloor \frac{rs}{p} \right\rfloor - \left\lfloor \frac{(r-1)s}{p} \right\rfloor \right) \]
\[= \left\lfloor \frac{(p-1)s/2}{p} \right\rfloor - \left\lfloor \frac{2s}{p} \right\rfloor = \left\lfloor \frac{(p-1)s/2}{p} \right\rfloor, \]
\[\frac{1}{2} (p - 1)(2t) = (p - 1)t = (t - 1)p + (p - t), \]
\[\frac{1}{2} (p - 1)(2t - 1) = (p - 1)t - \frac{1}{2} (p - 1) \]
\[= (t - 1)p + \left(\frac{1}{2} (p + 1) - t \right), \]
so that
A GENERALIZATION OF MAILLET'S DETERMINANT 261

\[
\sum_{r=3}^{(p-1)/2} \left(\left\lfloor \frac{rs}{p} \right\rfloor - \left\lfloor \frac{(r-s)s}{p} \right\rfloor \right) = \begin{cases}
 t - 1 & (s = 2t) \\
 t - 1 & (s = 2t - 1).
\end{cases}
\]

Hence applying (22) we get

\[
| D_{p''} | \leq \prod_{s=3}^{(p-1)/2} \left\lfloor \frac{s-1}{2} \right\rfloor,
\]

so that

\[
| D_{p''} | \leq \begin{cases}
 (m - 1)! & (p = 4m + 1) \\
 (m - 1)!m^{1/2} & (p = 4m + 3).
\end{cases}
\]

By (3) and (25) this yields

\[
(26) \quad h \leq \begin{cases}
 (m - 1)! & (p = 4m + 1) \\
 (m - 1)!m^{1/2} & (p = 4 + 3).
\end{cases}
\]

While (26) is stronger than (21) it does not yield (20).

REFERENCES

Duke University