ON THE INTERVAL TOPOLOGY OF AN \(l \)-GROUP

E. S. WOLK

1. Introduction. Let \(G \) be an \(l \)-group in the sense of Birkhoff [1; 2]. We consider the well-known interval topology of \(G \), which is obtained by taking the family of all closed intervals of \(G \) as a sub-base for the closed sets. Birkhoff [1, Problem 104, p. 233] raised the question whether an arbitrary partially ordered group is a topological group with respect to its interval topology. This question was answered in the negative by Northam [4], who gave an example of an \(l \)-group which is not a Hausdorff space in its interval topology (and hence not a topological group). The purpose of this note is to show that this behavior of an \(l \)-group is far from "pathological," but actually is characteristic of large classes of \(l \)-groups. Several theorems describing such classes of \(l \)-groups are obtained, all following as a consequence of a rather elementary lemma (Lemma 3 below).

2. Preliminaries. We shall employ the terminology of nets due to Kelley [3]. For brevity we shall write "\(G \) is IH" for the statement "\(G \) is a Hausdorff space in its interval topology." By a closed interval in \(G \) we shall mean any subset of the form \(\{ x \in G \mid a \leq x \leq b \} \), \(\{ x \in G \mid x \geq a \} \), or \(\{ x \in G \mid x \leq a \} \), where \(a \) and \(b \) are arbitrary elements of \(G \).

Lemma 1. If there exists a net \(\{ f(n) \mid n \in D \} \) in a partially ordered set \(G \) such that \(f(n) \) is eventually in the complement of any closed interval of \(G \), then \(G \) is not IH.

Proof. A base for the open sets of the interval topology of \(G \) consists of all subsets of the form \(\cap \{ K_i \mid i = 1, 2, \ldots, k \} \), where each \(K_i \) is the complement of a closed interval. Thus any net \(f \) satisfying the above hypothesis is eventually in each open set of \(G \). Hence \(f \) converges to each point of \(G \) and \(G \) is not IH.

Our terminology and notation for \(l \)-groups is that of Birkhoff [1; 2]. Let \(G \) be any commutative \(l \)-group and \(\mathcal{M} \) its set of meet-irreducible \(l \)-ideals. For each \(M \in \mathcal{M} \) it is known that the \(l \)-quotient-group \(G/M \) is a simply ordered group. Furthermore, \(\cap \{ M \mid M \in \mathcal{M} \} \) is empty for any commutative \(l \)-group \(G \). Hence there exists an isomorphism of \(G \) onto an \(l \)-subgroup of the direct product of a set of simply ordered groups \(\{ G_i \mid i \in I \} \), where each \(G_i \) is the \(l \)-quotient-group of \(G \) by
some meet-irreducible l-ideal M [2, Theorem 36]. We identify any element x of G with the corresponding element $(x_1, x_2, \ldots, x_i, \ldots)$ of the direct product $\prod\{G_i \mid i \in I\}$. The direct product $\prod\{G_i \mid i \in I\}$ is ordered "componentwise": i.e., if a and b are elements of this product, we define $a \leq b$ if and only if $a_i \leq b_i$ for all $i \in I$. The identity element of G will be denoted by 0, the identity of G_i by 0_i. The additive notation will be used.

The following result, which is a consequence of Theorems 23 and 27 of [2], is also known.

Lemma 2. If G is a commutative l-group and M is a maximal l-ideal of G, then G/M is an Archimedean simply ordered group.

3. Results. Our theorems are a consequence of the following lemma.

Lemma 3. Let G be an l-subgroup of the direct product $\prod\{G_i \mid i \in I\}$ of arbitrary l-groups. Let r and s be any members of the index set I. Suppose that there exists a net $\{f(m), m \in D\}$ of elements of G satisfying

(i) for any $k \in G_r$, \(f(m) \) is eventually greater than k, and

(ii) $f_s(m) \leq 0$, for all $m \in D$.

Then G is not IH.

Proof. Let $\{b(n), n \in E\}$ be any net of elements of G with the property that, given any $j \in G_s$, $b_s(n)$ is eventually less than j. Note that for any $n \in E$, there exists an element m_n in D such that the rth component of $f(m_n) + b(n)$ is greater than 0, (one merely chooses m_n so that $f_r(m_n) > -b_r(n)$). Define $g(n) = f(m_n) + b(n)$. Then g is a net on E to G such that (i) $g_s(n)$ is eventually less than any given $j \in G_s$, and (ii) $g_r(n) > 0$, for all $n \in E$. Now consider the directed set $D \times E$ consisting of all pairs (m, n) for $m \in D$, $n \in E$, directed as usual by defining $(m_1, n_1) \leq (m_2, n_2)$ if and only if $m_1 \leq m_2$ and $n_1 \leq n_2$. (We are using the same symbol \leq for the order relations in D, E, and $D \times E$.) Define $h(m, n) = f(m) + g(n)$. Then h is a net on $D \times E$ to G which satisfies the hypothesis of Lemma 1. To see this, suppose that J_a is the closed interval $\{x \in G \mid x \leq a\}$, where a is an arbitrary element of G. Then there exists $m_0 \in D$ such that $f_r(m) > a_r$ for all $m \geq m_0$, and hence $h(m, n)$ is in the complement of J_a whenever $m \geq m_0$. Likewise, given the closed interval $J'_a = \{x \in G \mid x \geq a\}$, there exists $n_0 \in E$ such that $g_s(n) < a_s$ for all $n \geq n_0$; and hence $h(m, n)$ is eventually in the complement of J'_a. Thus $h(m, n)$ is eventually in the complement of any closed interval, and by Lemma 1 G is not IH.

Note that Lemma 3 does not require that the factor groups G_i be simply ordered.
Theorem 1. Let G be a commutative l-group containing a maximal l-ideal M. If there exists an element b in G which is incomparable with 0 and such that $b \in M$, then G is not IH.

Proof. By Lemma 2, G/M is an Archimedean simply ordered group. Thus, since M is meet-irreducible, G may be considered as an l-subgroup of a direct product $\prod \{G_i : i \in I\}$ of simply ordered groups, where for a certain index $r \in I$, G_r is Archimedean. Since $b \in M$, we have $b_r \neq 0$. Assume that $b_r > 0$, (otherwise consider $-b$). Since b is incomparable with 0, for some $s \in I$ we must have $b_s < 0$. The sequence $\{nb : n = 1, 2, \ldots\}$ then satisfies the hypothesis of Lemma 3.

Theorem 2. Let G be an l-group such that $G = \prod \{G_i : i \in I\}$, where the index set I contains more than one member. Then G is not IH.

Proof. It is obviously possible to construct a net in G satisfying the hypothesis of Lemma 3.

Theorem 3. Let G be an l-subgroup of $\prod \{G_i : i \in I\}$, where each G_i is an Archimedean simply ordered group. Then G is IH if and only if G is simply ordered.

Proof. If b is an element of G which is incomparable with 0, then for some $r \in I$ we have $b_r > 0$, and for some $s \in I$ we have $b_s < 0$. The sequence $\{nb : n = 1, 2, \ldots\}$ satisfies the hypothesis of Lemma 3: hence G is not IH. The converse is clear.

Since any Archimedean simply ordered group is an l-subgroup of the additive group of the real numbers, Theorem 3 asserts that any l-group of real-valued functions which is not simply ordered is not IH. This result thus includes Northam’s example (an l-group of continuous real-valued functions) as a special case.

It remains an open question whether Theorem 3 can be extended (at least for commutative l-groups) to the case where some or all of the factor groups G_i are non-Archimedean. In this case there may exist no net in G satisfying the conditions of Lemma 3, as the example in the next section shows.

We obtain still another application of Lemma 3. If a is a positive element of the l-group G, we say that a is Archimedean if and only if for any $x \in G$ there exists a positive integer n with $na \geq x$. We then have

Theorem 4. Let G be a commutative l-group containing an element b which is incomparable with 0 and such that $|b|$ is Archimedean. Then G is not IH.
Proof. We consider G as an l-subgroup of $\prod \{G_i | i \in I\}$, where each G_i is simply ordered. For some $r \in I$, $s \in I$, we have $b_r > 0$, $b_s < 0$. Since $b_r = |b|r$, Lemma 3 may be applied to the sequence $\{nb | n = 1, 2, \ldots\}$.

4. An example. We give a simple example of a commutative l-group which is not simply ordered and in which there exists no net satisfying the hypothesis of Lemma 3. Let Z be the integers in the usual ordering, and let $H = Z \times Z$. We order H lexicographically by defining $(m_1, n_1) < (m_2, n_2)$ if and only if $m_1 < m_2$ or, when $m_1 = m_2$, if $n_1 < n_2$. Note that H is non-Archimedean in this ordering. Now consider the l-group $H \times H$ with the usual (componentwise) direct product ordering. Define $G = \{(i, j), (m, n) \in H \times H | i = m\}$. G is an l-subgroup of $H \times H$. Let $F = \{(i, j), (m, n) \in G | i = 0 \text{ and } m = 0\}$. Note that any element of G which is not in F is comparable with the identity element of G. Thus any net in G which has one component eventually positive also has the other component eventually positive.

It should be noted, however, that G is not IH. For consider the sequence defined by $f(n) = ((0, n), (0, -n))$, $n = 1, 2, \ldots$. The reader may verify that any closed interval of G which contains the range of a subsequence of f also contains the range of the entire sequence. We conclude that if x is any member of the sequence, and J is a closed interval of G which does not contain x, then the sequence f is eventually in the complement of J. This means that f converges in the interval topology to every element x in its range. Hence G is not IH.

References

University of Connecticut