ON GRADIENT MAPPINGS IN BANACH SPACES
TSUYOSHI ANDÔ

1. Introduction. Let E be a real Banach space, V a convex open subset of E. A real valued functional $I(x)$ defined on V is said to have the Fréchet derivative $D(x, h)$ if, for arbitrary fixed $x \in V$, $D(x, h)$ is a bounded linear functional on E in the variable h and

$$I(x + h) - I(x) = D(x, h) + o(h),$$

where

$$o(h) = o(||h||).$$

Thus $x \rightarrow D(x, \cdot)$ is a mapping of V into the space E^* conjugate to E, and is called a gradient mapping. It is said to be compact, if the image of each bounded set of V has a compact closure in E^*.

Recently E. H. Rothe [1] gave a (necessary and) sufficient condition for the compactness of gradient mappings under the condition that E has property (P), and showed that every reflexive Banach space with a basis has it. Here E is said to have property (P), if there exists a sequence $\{\psi_i\}$ of linearly independent elements of E^* and a positive number M with the following properties: the closed linear span of $\{\psi_i\}$ coincides with E^* and for each positive integer n there exists a linear projection of norm at most M on the intersection $\bigcap_{i=1}^n N_i$, where $N_i = \{x \in E | \psi_i(x) = 0\}$. In this note a theorem with the conclusion that the gradient mapping is compact is proved under conditions differing somewhat from those of Rothe, and without using anything like the property (P).

Theorem. Let $I(x)$ have the following two properties: (a) for each $\alpha > 0$ there exists a positive number β such that

$$|I(x) - I(y)| \leq \beta \|x - y\|, \quad x, y \in V, \|x\|, \|y\| \leq \alpha;$$

(b) to each $\epsilon > 0$ corresponds a finite number of elements $\phi_1, \phi_2, \ldots, \phi_n$ of E^* such that

$$|I(x + h) - I(x)| \leq \epsilon \|h\|, \quad x, x + h \in V,$$

for all h for which $\|h\| \leq \epsilon$ and $\phi_i(h) = 0 \ (i = 1, 2, \ldots, n)$. Then the gradient mapping $D(x, \cdot)$ is compact.

2. Proof of theorem. Our proof is based on the following decomposition lemma instead of on the use of linear projections.

Received by the editors April 18, 1960.
Lemma. Let \(N \) be a closed linear subspace of \(E \) with a finite co-dimension. Then there exists a compact set \(A \) with the properties that \(\|x\| \leq 1 \) (\(x \in A \)), and each \(h \in S \) (the open unit ball) admits a decomposition (not unique) \(h = a + b \) with \(a \in A \), \(b \in N \).

Proof. We consider as usual the quotient space \(E/N \) with the norm defined by \(\|P(x)\| = \inf_{y \in N} \|x - y\| \) where \(x \rightarrow P(x) \) is the canonical mapping of \(E \) onto \(E/N \). Since \(E/N \) is finite dimensional, the image \(P(S) \) of \(S \) has a compact closure in it. We shall construct by induction a sequence \(\{a_{ij}\}, i = 0, 1, 2, \ldots, j = 1, 2, \ldots, k_i \), of elements of \(S \) such that

\[
(2) \quad \min_{k} \|a_{ik} - a_{i,k+1}\| < 1/2^i, \quad i = 0, 1, 2, \ldots, j = 1, 2, \ldots, k_i,
\]

and for each \(x \in S \) and each \(i \) there exists \(y \in E \) (depending on \(x \) and \(i \)) such that

\[
(3) \quad P(x) = P(y) \quad \text{and} \quad \min_{j} \|a_{ij} - y\| < 1/2^i.
\]

Put \(k_0 = 1 \) and \(a_{01} = 0 \) (the origin). Suppose that

\[
\{a_{ij}\}, \quad i = 0, 1, 2, \ldots, n, \quad j = 1, 2, \ldots, k_i,
\]

have been constructed. Denote, for convenience, by \(S_n(x) \) the open ball with center \(x \) and radius \(1/2^n \). Since \(P(S_n(a_{nj}) \cap S) \) is totally bounded in \(E/N \) and \(P(S) \subset \bigcup_j P(S_n(a_{nj})) \) because of \((3) \), there exists a finite number of elements of \(S \), denoted by \(a_{n+1,j}, j = 1, 2, \ldots, k_{n+1} \), such that \(a_{n+1,j} \in \bigcup_k S_n(a_{nk}), j = 1, 2, \ldots, k_{n+1} \), and

\[
\min_{j} \|P(x) - P(a_{n+1,j})\| < 1/2^{n+1} \quad \text{for all} \quad x \in S.
\]

Then on account of the definition of norm in \(E/N \), for each \(x \in S \) there can be chosen \(y \in E \) such that \(P(x) = P(y) \) and \(\min_{j} \|a_{n+1,j} - y\| < 1/2^{n+1} \). Thus the induction is completed. Notice that the set \(\{P(a_{ij})\} \) is dense in \(P(S) \) by construction. We claim that the closure \(A \) of the set \(\{a_{ij}\} \) is compact. In fact, from \((2) \) it follows that for each \(n, m \) with \(m \geq n \)

\[
\min_{k} \|a_{mk} - a_{nk}\| < \sum_{i=n}^{m} 1/2^i < 1/2^{n-1}.
\]

Since \(\{a_{ij}\}_{i \leq n} \) is a finite set, this means that the set \(\{a_{ij}\} \) is totally bounded; consequently its closure \(A \) is compact. Since \(P(A) \) is compact in \(E/N \) and contains a dense subset of \(P(S) \), it follows that \(P(A) \supset P(S) \), that is, for each \(h \in S \) there exists \(a \in A \) with \(P(a) = P(h) \), i.e., \(h - a \in N \).
Now we turn to the proof of the theorem. If \(D(x, \cdot) \) is not compact, there exist a positive number \(\varepsilon \) and a sequence \(\{x_i\} \) of elements of \(V \) such that \(\|x_i\| \leq 1/\varepsilon \), \(i = 1, 2, \ldots \), and \(\|D(x_i, \cdot) - D(x_j, \cdot)\| > \varepsilon \) for \(i \neq j \). Let \(\phi_1, \phi_2, \ldots, \phi_n \) be chosen as in (b) with \(\varepsilon/8 \) instead of \(\varepsilon \). Since \(N = \{ x \in E | \phi_i(x) = 0, i = 1, 2, \ldots, n \} \) has a finite co-dimension, by the lemma there exists a compact set \(A \) of \(S \) (the closure of \(S \)) such that each \(h \in S \) admits a decomposition \(h = a + b \) with \(a \in A, b \in N \). It follows that \(\|b\| \leq \|a\| + \|h\| \leq 2 \). Since property (a) combined with definition (1) implies \(\sup_i \|D(x_i, \cdot)\| < \infty \), the family \(\{D(x_i, h)\} \), considered as continuous functions on the compact set \(A \) in the variable \(h \), is equi-continuous; consequently Ascoli-Arzela’s theorem tells us that there exists a subsequence \(\{x'_i\} \) for which

\[
\sup_{a \in A} |D(x'_i, a) - D(x'_j, a)| < \varepsilon/2, \quad i, j = 1, 2, \ldots .
\]

On the other hand, on account of the definition of norm of linear functionals,

\[
\|D(x'_i, \cdot) - D(x'_j, \cdot)\| = \sup_{h \in S} \left| D(x'_i, h) - D(x'_j, h) \right|
\]

\[
\leq \sup_{a \in A} \left| D(x'_i, a) - D(x'_j, a) \right| + 2 \cdot \sup_{k, b \in N, \|b\| \leq 2} \left| D(x'_k, b) \right| .
\]

Since \(b \in N \) and \(\|b\| \leq 2 \), property (b) (with \(\varepsilon/8 \)) combined with (1) implies \(\|D(x'_k, b)\| \leq \varepsilon/4 \), consequently

\[
\|D(x'_i, \cdot) - D(x'_j, \cdot)\| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon .
\]

This contradiction establishes the theorem.

Reference

Hokkaido University, Sapporo, Japan