ON BOUNDED FUNCTIONS WITH ALMOST PERIODIC DIFFERENCES
RAOUF DOSS

The aim of this paper is to generalize to groups the well-known Bohl-Bohr theorem, which states that if the indefinite integral, $F(x) = \int_{0}^{x} f(t) dt$, of an almost periodic function $f(x)$, is bounded, then it is almost periodic (see [1] or [2]).

No expression of the form $\int_{x}^{a} f(t) dt$ is available in groups, but observing that $F(a+x) - F(x) = \int_{x}^{a} f(t) dt$ is easily proved to be almost periodic, whatever be the constant a, we are led to the following

THEOREM. Let G be a multiplicative group and let the left differences $F(ax) - F(x)$ be right almost periodic for every $a \in G$, where F is a given complex-valued function on G. If $F(x)$ is bounded then it is right almost periodic.

We recall that a real or complex function $\phi(x)$ is right almost periodic if, from every sequence (c_{n}) we can extract a subsequence (b_{n}) for which the functions $\phi(x_{b_{n}})$ converge uniformly in G. In that case to every $\varepsilon > 0$ there corresponds a finite number of elements of G, say s_{1}, \ldots, s_{k}, such that to every $t \in G$ we can associate an integer $i \leq k$ for which

$$|\phi(tx) - \phi(xs_{i})| < \varepsilon,$$

whatever be $x \in G$.

Proof of the theorem. It is sufficient to consider the case of a real function. Suppose that $F(x)$ is not right almost periodic. Then there exists an $\alpha > 0$ and a sequence (c_{n}), such that, in every subsequence $(c_{n_{i}})$, $F(cx_{c_{n_{i}}})$ is not almost periodic. Then $F(ax_{c_{n}}) - F(x_{c_{n}})$ is not almost periodic for every $a \in G$.

Received by the editors June 30, 1960.
quence \((b_n) \subset (c_n)\) we can find \(b_p, b_q\) for which \(\sup |F(xb_p) - F(xb_q)| > \alpha\). We can even suppress the modulus sign by exchanging if necessary \(b_p\) and \(b_q\). In other words there exist \(t \in G, b_p, b_q\) such that

\[
F(b_q^{-1}b_p) - F(t) > \alpha.
\]

We shall prove that if \(F(a_1x_1) - F(x_1) > \beta\), we can find \(x_2, a_2 \in G\) such that \(F(a_2x_2) - F(x_2) > \beta + \alpha\). This will show that \(F(x)\) is unbounded, against the hypothesis, and the theorem will be proved.

So put \(\phi(x) = F(a_1x) - F(x)\) and suppose that

\[
\phi(x_1) = \beta + \varepsilon > \beta.
\]

Since \(\phi(x)\) is right almost periodic let \(s_1, \ldots, s_k\) be such that to every \(t \in G\) we can associate an integer \(i \leq k\) for which \(\left| \phi(xt) - \phi(xs_i) \right| < \varepsilon/2\).

In particular, for \(x = x_1s_i^{-1}\): \(\left| \phi(x_1s_i^{-1}t) - \phi(x_1) \right| < \varepsilon/2\), so that by (2) \(\phi(x_1s_i^{-1}t) > \beta + \varepsilon/2\), i.e.,

\[
F(a_1x_1s_i^{-1}t) - F(x_1s_i^{-1}t) > \beta + \varepsilon/2.
\]

Now consider the right almost periodic functions

\[
\phi_i(x) = F(a_1x_1s_i^{-1}x) - F(x) \quad (i = 1, \ldots, k).
\]

We can extract from the sequence \((c_n)\) a subsequence \((b_n)\) such that \(\left| \phi_i(xb_q^{-1}b_p) - \phi_i(x) \right| < \varepsilon/2\), whatever be \(x \in G, b_p, b_q\), and \(i = 1, \ldots, k\).

We deduce

\[
\left| F(a_1x_1s_i^{-1}tb_q^{-1}b_p) - F(tb_q^{-1}b_p) - F(a_1x_1s_i^{-1}t) + F(t) \right|
\]

\[
= \left| \phi_i(tb_q^{-1}b_p) - \phi_i(t) \right| < \varepsilon/2.
\]

Hence by (1)

\[
F(a_1x_1s_i^{-1}tb_q^{-1}b_p) - F(a_1x_1s_i^{-1}t) > \alpha - \varepsilon/2.
\]

(3) and (4) give, by addition, the required relation:

\[
F(a_1x_1s_i^{-1}tb_q^{-1}b_p) - F(x_1s_i^{-1}t) > \alpha + \beta.
\]

The proof is now complete.

References

Cairo University, Egypt, U.A.R.