ON AUTOMORPHISM GROUPS OF HOMOGENEOUS COMPLEX MANIFOLDS

SHOSHICHI KOBAYASHI

The purpose of this short note is to prove the following:

Theorem. Let M be a homogeneous complex manifold of complex dimension n and G a transitive group of holomorphic transformations of M. Let F be the complex Hilbert space of square integrable holomorphic n-forms on M. Then the natural unitary representation of G in F is irreducible, i.e., no proper closed subspace of F is invariant by G.

The reproducing property of the Bergman kernel function [1] plays an essential role in our proof. As we consider not only bounded domains in \mathbb{C}^n, but also general complex manifolds, we replace the kernel function by the kernel form (see [2] for the definition and properties of the kernel form). If M is a domain in \mathbb{C}^n, then F can be identified with the space F^* of square integrable holomorphic functions (with respect to the Euclidean measure of \mathbb{C}^n). For our purpose, it is, however, desirable to use F even for a domain in \mathbb{C}^n, because every holomorphic transformation of M induces, in a natural way, a unitary transformation of F.

We recall that, by a square integrable holomorphic n-form f, we mean

$$[(-1)^{1/2}]^{n^2} \int_M f \wedge \bar{f} < \infty.$$

The inner product in F is defined by

$$(f, g) = [(-1)^{1/2}]^{n^2} \int_M f \wedge \bar{g}.$$

In general, F may or may not be of infinite dimension, or may even be trivial.

Proof. If F is trivial, that is, $F = \{0\}$, then the theorem is trivially true. We assume therefore that F is nontrivial. Let $\{h_0, h_1, h_2, \ldots\}$ be a complete orthonormal basis for F. Then the kernel form

$$K(z, \bar{w}) = \sum h_j(z) \wedge \{h_j(w)\}^{-}$$

is a holomorphic $2n$-form on $M \times \overline{M}$, where \overline{M} denotes the complex manifold whose complex structure is conjugate to that of M. As in

Received by the editors June 6, 1960.

359
the case of the kernel function, $K(z, w)$ is independent of choice of the basis chosen. By identifying M with the diagonal of $M \times \overline{M}$, we can consider $K(z, \overline{z})$ as a $2n$-form on M. From the nontriviality of F and the homogeneity of M, it follows that, for every point z of M, there exists an element f of F which does not vanish at z. This implies immediately that $K(z, \overline{z})$ is different from zero at every point z of M.

Let F' be a closed subspace of F invariant by G and F'' the orthogonal complement of F' in F. Let $\{f_0, f_1, \cdots \}$ (respectively $\{g_0, g_1, \cdots \}$) be a complete orthonormal basis for F' (respectively F''). Since the kernel form is independent of choice of basis for F, we have that

$$K(z, w) = \sum f_j(z) \wedge \{f_j(w)\}^- + \sum g_k(z) \wedge \{g_k(w)\}^-.$$

Set

$$K'(z, w) = \sum f_j(z) \wedge \{f_j(w)\}^-.$$

Since F' is invariant by G, so is K'. As both $K(z, \overline{z})$ and $K'(z, \overline{z})$ are forms of maximum degree on M invariant by G and G is transitive on M, we have that

$$K'(z, \overline{z}) = c \cdot K(z, \overline{z}) \text{ for } z \in M,$$

where c is a positive constant (provided that $F' \neq \{0\}$). Since both $K(z, w)$ and $K'(z, w)$ are holomorphic on $M \times \overline{M}$, we have that

$$K'(z, w) = c \cdot K(z, w) \text{ for } (z, w) \in M \times \overline{M}.$$

Take any f'' from F''. Then

$$\int_{[z] \times \overline{M}} K'(z, w) \wedge f''(w) = \sum f_j(z) \cdot \int_M \{f_j(w)\}^- \wedge f''(w) = 0$$

because

$$(f_j, f'') = 0.$$

On the other hand, we have

$$\int_{[z] \times \overline{M}} K'(z, w) \wedge f''(w) = \int_{[z] \times \overline{M}} c \cdot K(z, w) \wedge f''(w) = [(-1)^{1/2}]^n c \cdot f''(z)$$

because of the reproducing property of K:

$$\int_{[z] \times \overline{M}} K(z, w) \wedge f(w) = f(z) \text{ for every } f \in F.$$

Since $c \neq 0$, f'' must identically vanish. Hence, $F'' = \{0\}$. Q.E.D.
SEQUENCES OF HOMEOMORPHISMS ON THE n-SPHERE

M. K. FORT, JR.¹

1. Introduction. In his recent book of mathematical problems, S. Ulam (see [1, p. 46]) states the following question as one which he and Borsuk have considered:

Given an arbitrary closed subset C of an n-sphere S, $n > 0$, does there exist a sequence H_1, H_2, H_3, \cdots of homeomorphisms of S onto itself such that for every p of S, $\lim_{k \to \infty} H_k(p)$ exists and is in C, and every point of C is such a limit?

This problem also occurs in the original Scottish Book, along with the remark that Borsuk has solved the problem for the case in which S is two-dimensional.

In this note an affirmative answer is obtained for the above question in the general case. The proof leans heavily upon a result which the author obtained in [2].

2. Admissible polyhedra. Let Σ be the set of all closed n-cubes which are contained in the euclidean n-space R^n and whose edges are parallel to the coordinate axes.

If $J \in \Sigma$, a subset A of the boundary of J is an α-set of J if A is the union of a collection of $(n-1)$-dimensional faces of J and for some such face σ, σ is contained in A while the $(n-1)$-dimensional face opposite σ is not contained in A.

A polyhedron P is admissible if there exists a sequence P_1, \cdots, P_k of polyhedra such that: $P_1 \in \Sigma$, $P_k = P$, and for each $i = 1, \cdots, k-1$, $P_{i+1} = P_i \cup J_i$ where $J_i \in \Sigma$ and $P_i \cap J_i$ is an α-set of J_i.

Presented to the Society, August 30, 1960 under the title The limit of a sequence of homeomorphisms of S^n onto itself; received by the editors June 22, 1960.

¹ The author is an Alfred P. Sloan Research Fellow.