Reflective rings with the ascending chain condition
HTML articles powered by AMS MathViewer
- by E. H. Feller and E. W. Swokowski
- Proc. Amer. Math. Soc. 12 (1961), 651-653
- DOI: https://doi.org/10.1090/S0002-9939-1961-0125861-0
- PDF | Request permission
References
- Edmund H. Feller, The lattice of submodules of a module over a noncommutative ring, Trans. Amer. Math. Soc. 81 (1956), 342–357. MR 77512, DOI 10.1090/S0002-9947-1956-0077512-4
- Edmund H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79–91. MR 98763, DOI 10.1090/S0002-9947-1958-0098763-0
- E. H. Feller and E. W. Swokowski, Reflective $N$-prime rings with the ascending chain condition, Trans. Amer. Math. Soc. 99 (1961), 264–271. MR 120254, DOI 10.1090/S0002-9947-1961-0120254-9
- A. W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3) 8 (1958), 589–608. MR 103206, DOI 10.1112/plms/s3-8.4.589
- A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201–220. MR 111766, DOI 10.1112/plms/s3-10.1.201
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601 —, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37, 1956. E. H. Feller and E. W. Swokowski, Correction to [2], to appear.
Bibliographic Information
- © Copyright 1961 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 12 (1961), 651-653
- MSC: Primary 16.25
- DOI: https://doi.org/10.1090/S0002-9939-1961-0125861-0
- MathSciNet review: 0125861