A SYMMETRY THEOREM FOR THE DIFFERENTIAL IDEAL $[uv]$

KATHLEEN B. O'KEEFE

1. Introduction. Let $F[uv]$ be a Ritt algebra in the indeterminates u and v, and let $[uv]$ be the differential ideal generated by the form $X = uv$. If $P = UV$ is a power product (pp.) in u_i and v_j (the subscripts indicate derivatives) and contains no v_k, $k < d_1$ (d_1 is the degree of U), then $P \neq 0 [uv]$. Such pp. are called α-terms, and, in particular, a pp. in u alone, a pp. in v alone, and unity are α-terms. All other pp. may be reduced modulo $[uv]$ to a linear combination of α-terms by H. Levi's reduction process [1; 2]. Levi's methods provide an answer to the question of whether or not a pp. is in the ideal $[uv]$ because a linear combination of α-terms is congruent to zero modulo $[uv]$ if and only if all the coefficients are zero. Both the reduction process and the above definitions do not make use of the natural symmetry of the ideal $[uv]$. A pp. $P = UV$ of signature (d_1, d_2) and weight $w = d_1d_2$ is reduced to a multiple of the α-term $u_0^d v_0^d$, but, by interchanging the roles of u and v, one could reduce P to a multiple of the term $u_0^d v_0^d$. In certain of the problems suggested by J. F. Ritt [3], it would be convenient to know the relationship between $u_0^d v_0^d$ and $u_0^d v_0^d$ so that both types of reductions could be used. The purpose of this note is to exhibit the exact relationship between $u_0^d v_0^d$ and $u_0^d v_0^d$ so that for a pp. of signature (d, d) and weight $w = d^2$, the u_i and v_i may be interchanged.

2. Symmetry theorems. Let $P = UV$ have signature (d_1, d_2) and weight $w = w_1 + w_2$. A theorem of H. Levi states that if $w < d_1d_2$, then $P = 0 [uv]$. Special cases of this theorem are stated for easy reference as

Lemma 2.1. (a) If $P_k = u_0 u_1 \cdots u_{k-1} u_2 v_1 v_2 \cdots v_{k+1}$, then $P_k \equiv 0 [uv]$. (b) If $P_k = u_0 u_1 \cdots u_k v_1 v_0 \cdots v_{k+1} v_2$, then $P_k \equiv 0 [uv]$.

Proof. (a) The signature of P_k is $(k + 2, k + 1)$ and the weight is $k^2 + 3k + 1$, hence $w < d_1d_2$. The proof of (b) is similar.

Theorem 2.2.

$u_0 u_1 \cdots u_j v_1 v_2 \cdots v_{j+1} \equiv (-1)^{j+1} u_1 \cdots u_{j+1} v_0 \cdots v_j [uv]$.

Proof. For $j = 0$, $[uv]_1 = u_0 v_1 + u_1 v_0 \equiv 0 [uv]$, hence $u_0 v_1 = - u_1 v_0 [uv]$. Assume that the theorem is true for all values less than j. Replacing

Received by the editors June 24, 1960.

654
by the other terms in the \((2j+1)\)st derivative of \([uv]\), we have

\[
\begin{align*}
&u_0v_{j+1} \equiv - \sum_{k=0; k \neq j}^{2j+1} \binom{2j+1}{k} v_k u_{2j+1-k} [uv].
\end{align*}
\]

Except for the term \(k = j+1\), each term of the sum is zero modulo \([uv]\) by Lemma 2.1. The induction hypothesis applies to the term \(k = j+1\), and noting that

\[
\frac{\binom{2j+1}{j+1}}{\binom{2j+1}{j}} = 1,
\]

the proof is concluded.

Lemma 2.3. If \(j > 0\) and \(0 \leq t \leq j-1\), then

\[
\begin{align*}
&u_0u_1 \cdots u_{j-t-2}v_{j-t-1}v_{j-t}v_{j-t+1}v_{j-t+r}v_{j+1} \\
&\equiv - \binom{2j-2t+r-1}{j-1} \cdot \binom{2j-2t+r-1}{j-1} \\
&\times u_0u_1 \cdots u_{j-t-2}v_{j-1}v_{j-t}v_{j-t+r}v_{j+1} [uv]
\end{align*}
\]

for \(0 < r \leq t+1\).

Proof. Replace \(u_{j-t}v_{j-t+r-1}\) by the other terms in the \((2j-2t+r-1)\)th derivative of \([uv]\) and get the congruence

\[
\begin{align*}
&u_0u_1 \cdots u_{j-t-2}v_{j-t-1}v_{j-t}v_{j-t+1}v_{j-t+r}v_{j+1} \\
&\equiv - \sum_{k=0; k \neq j-1}^{2j-2t+r-1} A_{k,r} u_k v_{2j-2t+r-1-k} [uv],
\end{align*}
\]

where
The terms with \(k = 0, 1, \cdots, j - t - 2 \) are zero modulo \([uv]\) by Lemma 2.1(a). The terms with \(k = j - t + 1, \cdots, 2j - 2t + r - 1 \) are also zero modulo \([uv]\). To see this, consider the sub-pp.

\[
A_{k, r} = -\binom{2j - 2t + r - 1}{k} \binom{2j - 2t + r - 1}{j - t}.
\]

For \(j - t = 1 \),

\[
Q_k = u_0 v_{1+r-k},
\]

and for \(j - t > 1 \),

\[
Q_k = u_0 u_1 \cdots v_{j-t+2-k} v_{j-t-1} v_{1} v_{2} \cdots v_{j-t-1} v_{2j-2t+r-1-k}.
\]

\(Q_k \) has signature \((j-t+r-1, j-t)\) and weight \(w = (j-t+r-1)(j-t) + (j-t-k) \). Since \(j-t < k \), \(w < d_1 d_2 \), and \(Q_k = 0[uv] \). The remaining case \(k = j - t - 1 \) gives the lemma.

Lemma 2.4. If \(j > 0 \), then \(u_0 u_1 \cdots u_{j-t-1} u_{j-t} v_1 v_2 \cdots v_{j-t-1} v_{j-t} v_{j+1} = B_{t,j} u_0 u_1 \cdots u_{j-t-2} u_{j-t-1} v_1 v_2 \cdots v_{j-t-1} v_{j+1} [uv] \), \(B_{t,j} \neq 0 \), for \(0 \leq t \leq j-1 \).

Proof. Apply Lemma 2.3 with \(r = 1 \); then, if \(t > 0 \), apply Lemma 2.3 repeatedly with \(r = 2, 3, \cdots, t+1 \). Note that \(B_{t,j} = \prod_{r=1}^{t+1} A_{j-t-1,r} \) and is not zero.

Theorem 2.5. \(u_0 u_1 \cdots u_{j-t-1} u_{j-t} v_1 v_2 \cdots v_{j+1} = C_j u_0 v_{j+1} [uv] \), \(C_j \neq 0 \).

Proof. The theorem follows by a \(j \)-fold application of Lemma 2.4, with \(C_j = \prod_{i=0}^{j-1} B_{t,i} \) if \(j > 0 \); \(C_0 = 1 \).

Theorem 2.6. \(u_0 v_{j+1} = (-1)^{j+1} u_{j+1} v_0 v_{j+1} [uv] \).

Proof. By Theorem 2.5 and the natural symmetry of \([uv]\), we have

1. \(u_0 u_1 \cdots u_{j-t-1} u_{j-t} v_1 v_2 \cdots v_{j+1} = C_j u_0 v_{j+1} [uv] \), \(C_j \neq 0 \),
2. \(u_1 u_2 \cdots u_{j+1} v_0 v_1 \cdots v_j = C_j u_{j+1} v_0 [uv] \).

By Theorem 2.2, the conclusion follows.

University of Washington

FORMS OF ALGEBRAIC GROUPS

DAVID HERTZIG

In [4] A. Weil solves the following problem: if \(V \) is a variety defined over an overfield \(K \) of a groundfield \(k \), among the varieties birationally equivalent to \(V \) over \(K \) find one which is defined over \(k \). The solution is essentially given by the 1-dimensional Galois cohomology. It was observed by J.-P. Serre that in the case \(V \) itself is defined over \(k \) the 1-cocycles can be regarded as putting a “twist” into \(V \). In the particular case of simple algebraic groups over finite fields this gives rise to some new finite simple groups.

Let \(G \) be an algebraic group defined over a field \(k \) and \(K \) a Galois extension of \(k \). An algebraic group \(G' \) defined over \(k \) will be called a \(k \)-form of \(G \) split by \(K \) if there is a rational isomorphism \(\phi \) defined over \(K \) between \(G' \) and \(G \). Denote by \(g \) the Galois group of \(K \) over \(k \).

Theorem 1. Let \(G \) be a connected algebraic group defined over a field \(k \) and \(K \) a Galois extension of \(k \) with Galois group \(g \). The distinct \(k \)-forms of \(G \) (up to \(k \)-isomorphism) are in one-to-one correspondence with the elements of \(H^1(g, \text{Aut}_K G) \).

Proof. Let \(f \) be a 1-cocycle from \(g \) to \(\text{Aut}_K G \). By Weil’s theorem [4, Theorem 1] there exists a variety \(G' \) defined over \(k \) together with a rational isomorphism \(\phi \) of \(G' \) with \(G \) which is defined over \(K \).

Presented to the Society, August 28, 1957 under the title *On simple algebraic groups*. Preliminary report; received by the editors August 22, 1960.