Differentiable intrinsic functions of complex matrices
HTML articles powered by AMS MathViewer
- by R. F. Rinehart
- Proc. Amer. Math. Soc. 12 (1961), 565-573
- DOI: https://doi.org/10.1090/S0002-9939-1961-0155001-3
- PDF | Request permission
References
- Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR 0027863 F. Hausdorff, Zur Theorie der Systeme complexer Zahlen, Leipziger Berichte vol. 52 (1900) pp. 43-61.
- Walter O. Portmann, A derivative for Hausdorff-analytic functions, Proc. Amer. Math. Soc. 10 (1959), 101–105. MR 106989, DOI 10.1090/S0002-9939-1959-0106989-9
- R. F. Rinehart, The equivalence of definitions of a matric function, Amer. Math. Monthly 62 (1955), 395–414. MR 69908, DOI 10.2307/2306996
- R. F. Rinehart, Extension of the derivative concept for functions of matrices, Proc. Amer. Math. Soc. 8 (1957), 329–335. MR 84564, DOI 10.1090/S0002-9939-1957-0084564-0
- R. F. Rinehart, Elements of a theory of intrinsic functions on algebras, Duke Math. J. 27 (1960), 1–19. MR 120349
- R. F. Rinehart, Intrinsic functions on matrices, Duke Math. J. 28 (1961), 291–300. MR 155000 F. Ringleb, Beiträge zur Funktionentheorie in hyperkomplexen Systemen. I, Rend. Circ. Mat. Palermo vol. 57 (1933) pp. 311-340.
- Kenjiro Shoda, Ein Kriterium für normale einfache hyperkomplexe Systeme, Proc. Imp. Acad. Tokyo 10 (1934), no. 4, 195–197 (German). MR 1568372 E. C. Titchmarsh, The theory of functions, Oxford University Press, 1947.
Bibliographic Information
- © Copyright 1961 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 12 (1961), 565-573
- MSC: Primary 30.83
- DOI: https://doi.org/10.1090/S0002-9939-1961-0155001-3
- MathSciNet review: 0155001