The Haar problem in $L_{1}$
HTML articles powered by AMS MathViewer
- by R. M. Moroney
- Proc. Amer. Math. Soc. 12 (1961), 793-795
- DOI: https://doi.org/10.1090/S0002-9939-1961-0126689-8
- PDF | Request permission
References
- Alfred Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann. 78 (1917), no. 1, 294–311 (German). MR 1511900, DOI 10.1007/BF01457106
- N. I. Achieser, Theory of approximation, Frederick Ungar Publishing Co., New York, 1956. Translated by Charles J. Hyman. MR 0095369
- A. N. Kolmogorov, A remark on the polynomials of P. L. Čebyšev deviating the least from a given function, Uspehi Matem. Nauk (N.S.) 3 (1948), no. 1(23), 216–221 (Russian). MR 0025609
- T. J. Rivlin and H. S. Shapiro, Some uniqueness problems in approximation theory, Comm. Pure Appl. Math. 13 (1960), 35–47. MR 123127, DOI 10.1002/cpa.3160130104
- A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465–478 (Russian, with French summary). MR 0004080
- Paul R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416–421. MR 24963, DOI 10.1090/S0002-9904-1948-09020-6
- R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238–255. MR 113125, DOI 10.1090/S0002-9947-1960-0113125-4
Bibliographic Information
- © Copyright 1961 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 12 (1961), 793-795
- MSC: Primary 46.90
- DOI: https://doi.org/10.1090/S0002-9939-1961-0126689-8
- MathSciNet review: 0126689