THE MONOTONE UNION OF OPEN \(n \)-CELLS
IS AN OPEN \(n \)-CELL

MORTON BROWN

In a research announcement \([2]\) B. Mazur indicated that modulo the Generalized Schoenflies Theorem, the following theorem could be proved:

"If the open cone over a topological space \(X \) is locally Euclidean at the origin, then it is topologically equivalent with Euclidean space."

Ronald Rosen \([3]\) has described an ingenious proof of this theorem based on the now known \([1]\) Generalized Schoenflies Theorem. In the present paper we prove a stronger theorem without employing the Generalized Schoenflies Theorem.

Definitions and notation. If \(Q \) is an \(n \)-cell then \(\dot{Q}, Q \) denote the interior and boundary of \(Q \), respectively. An \(n \)-annulus is a homeomorph of \(S^{n-1} \times [0,1] \). If \(S \) is an \((n-1)\)-sphere in an \(n \)-cell, then \(I(S) \) denotes the interior (complementary domain) of \(S \). If \(S_1, S_2 \) are \((n-1)\)-spheres in an \(n \)-cell and \(S_1 \subset I(S_2) \), then \([S_1, S_2]\) (or equivalently \([S_2, S_1]\)) denotes the set \(Cl[I(S_2)] - I(S_1) \). An \((n-1)\)-sphere \(S \) embedded in a space \(X \) is collared if there is a homeomorphism \(h \) of \(S^{n-1} \times [0,1] \) into \(X \) such that \(h(S^{n-1} \times 1/2) = S \). Finally \(B \), will denote the \(n \)-ball of radius \(r \) in \(E^n \) and centered at the origin.

Lemma 1. Let \(S \) be a collared \((n-1)\)-sphere in the interior of an \(n \)-cell \(Q \) such that \(Cl[I(S)] \) is an \(n \)-cell.\(^1\) Let \(h \) be a homeomorphism of \(Q \) upon itself such that \(S \subset I(h(S)) \) and \(h|U = 1 \) where \(U \) is a nonempty open subset of \(I(S) \). Then \(h(S) \) is a collared \((n-1)\)-sphere in \(\dot{Q} \), \(Cl[I(h(S))] \) is an \(n \)-cell and \([S, h(S)]\) is an \(n \)-annulus.

Proof. Let \(f \) be a homeomorphism of \(S^{n-1} \times [0,1] \) into \(\dot{Q} \) such that \(f(S^{n-1} \times 0) = S, f(S^{n-1} \times [0,1]) \cap h(S) = 0 \), and \(f(S^{n-1} \times [0,1]) \cap I(S) = 0 \). Evidently \(I(S) \cup f(S^{n-1} \times [0,1]) \) is an \(n \)-cell. Hence there is a homeomorphism \(g \) of \(Q \) upon itself such that:

\[
\begin{align*}
(1) & \quad g(S) \subset U, \\
(2) & \quad gf(S^{n-1} \times 1/2) = S, \\
(3) & \quad g \mid h(S) = 1.
\end{align*}
\]

Then

\(^1\) The results of \([1]\) make this last part of the hypothesis unnecessary.

812

Presented to the Society, September 2, 1960; received by the editors September 30, 1960.
THE MONOTONE UNION OF OPEN n-CELLS

$g^{-1}hgf(S^{n-1} \times [0, 1/2]) = g^{-1}hg[f(S^{n-1} \times 0), f(S^{n-1} \times 1/2)]$

$= g^{-1}h[g(S), S]$

$= g^{-1}[g(S), h(S)]$

$= [S, h(S)].$

Hence $[S, h(S)]$ is an n-annulus. Obviously $h(S)$ is collared and $	ext{Cl} [I(h(S))]$ is an n-cell.

Lemma 2. Let S be a collared $(n-1)$-sphere in the interior of an n-cell Q such that $\text{Cl} [I(S)]$ is an n-cell. Suppose M is a compact subset of Q. Then there is a collared $(n-1)$-sphere S' in Q such that $I(S) \supset M \cup S$, $\text{Cl} [I(S')]$ is an n-cell, and $[S, S']$ is an n-annulus.

Proof. We may suppose without loss of generality that Q is the unit ball B_1 in E^n and that $I(S)$ contains the origin. Let $\epsilon > 0$ be small enough so that $B_\epsilon \subset I(S)$ and $M \subset J_\epsilon$. Let h be a homeomorphism of B_1 upon itself such that $h|_{B_{1/2}} = 1$ and $h(B_\epsilon) \subset B_{1-\epsilon}$. Then $S' = h(S)$ contains $M \cup S$ in its interior. Lemma 1 insures that $h(S)$ is collared and that $[S, h(S)]$ is an n-annulus.

Theorem. Let X be a topological space which is the union of a sequence $V_1 \subset V_2 \subset \cdots \subset V_i \subset \cdots$ of open subsets where each V_i is homeomorphic to E^n. Then X is homeomorphic to E^n.

Proof. Let h_i map E^n homeomorphically onto V_i. Then $h_i(B_1)$ is an n-cell in V_i. There is an integer n_2 such that

$$h_2(B_{n_2}) \supset h_1(B_2) \cup h_2(B_2).$$

Inductively, there is a sequence of integers n_3, n_4, \ldots, such that for all i,

$$h_i(B_{n_i}) \supset h_1(B_i) \cup \cdots \cup h_i(B_i) \cup h_{i-1}(B_{n_{i-1}}).$$

Since X is locally Euclidean, $h_i(B_{n_i})$ is an n-cell in X containing $h_{i-1}(B_{n_{i-1}})$ in its interior $h_i(B_{n_i})$. Finally $\bigcup_{i=1}^\infty B_{n_i} = X$. For if $x \in X$ there is an integer j such that $x \in V_j$. Hence there is an integer $k > j$ such that $x \in h_j(B_k)$. But then $x \in h_k(B_n)$. Let $Q_i = h_i(B_n)$. Then $X = \bigcup_{i=1}^\infty Q_i$ where Q_i is an n-cell, $Q_i \subset \tilde{Q}_{i+1}$, and \tilde{Q}_{i+1} is open in X.

Let S_1 be a collared $(n-1)$-sphere in \tilde{Q}_1 such that $\text{Cl} [I(S_1)]$ is an n-cell. Applying Lemma 2 to the n-cell Q_1, we obtain a collared $(n-1)$-sphere S_2 in \tilde{Q}_2 such that $I(S_2) \supset Q_1 \cup S_1$, $[S_1, S_2]$ is an n-annulus, and $\text{Cl} [I(S_2)]$ is an n-cell. The same lemma applied to Q_2 and S_2 yields us a collared sphere S_3 in \tilde{Q}_3 such that $I(S_3) \supset Q_2 \cup Q_1$, $[S_2, S_3]$ is an n-annulus, and $\text{Cl} [I(S_3)]$ is an n-cell. Continuing this argument, we
get a sequence S_1, S_2, \cdots, of $(n-1)$-spheres such that $[S_i, S_{i+1}]$ is an n-annulus and $X = I(S_1) \cup [S_1, S_2] \cup [S_3, S_4] \cup \cdots$. Evidently X is homeomorphic to E^n.

References

University of Michigan

THREADS WITHOUT IDEMPOTENTS

C. R. STOREY

If a thread S has no idempotents and if $S^2 = S$, then S is isomorphic with the real interval $(0, 1)$ under ordinary multiplication [2, Corollary 5.6]. Although the result is not nearly as pleasing as the special case just quoted, we shall give here a description of any thread without idempotents. Recall from [1] that a thread is a connected topological semigroup in which the topology is that induced by a total order.

First some examples. Let X be a totally ordered set which is a connected space in the interval topology, let T be a subset of X containing, with t, all elements less than t, and let ϕ be any continuous function from X into $(0, 1)$ whose restriction, ϕ_0, to T is a strictly order-preserving map of T onto $(0, \alpha^2)$ where $\alpha = \text{l.u.b.} \phi(X)$. (We admit that α might be 1.) For such a ϕ to exist it is evidently necessary that X not have a least element, that T not have a greatest element and, provided $T \neq X$ so that the least upper bound, q, of T exists, that $\phi(q) = \alpha^2$.

If $\phi(X)$ is the open interval $(0, \alpha)$, define a multiplication in X by: $x \circ y = \phi^{-1}(\phi(x)\phi(y))$. With this definition it is quite easy to see that X is a thread without idempotents and that ϕ is a homomorphism. In the event that $\phi(X)$ is the half closed interval $(0, \alpha]$ (which implies of course that $\alpha < 1$), put $A = \phi^{-1}(\alpha)$ and $B = \phi^{-1}(\alpha^2)$, observe that q must be the least element of B, and let ψ be any continuous

Received by the editors July 28, 1960.

1 This paper was prepared while the author held a National Science Foundation Postdoctoral Fellowship.