Let f be a measurable function defined on the closed unit square $Q = I \times I$, $I = [0, 1]$. For every $x \in I$, let f_x be the function of y defined by $f_x(y) = f(x, y)$ and for every $y \in I$, let f^y be the function of x defined by $f^y(x) = f(x, y)$. Let $V(f_x)$ and $V(f^y)$ be the variations of f_x and f^y on I, respectively. The function f is said to be BVC (of bounded variation in the sense of Tonelli and Cesari \cite{1,2}), if there are functions g and h, which are equal to f almost everywhere on Q, such that: $V(g_x) < \infty$ for almost all $x \in I$, $V(h^y) < \infty$ for almost all $y \in I$, $\int_Q V(g_x) \, dx < \infty$ and $\int_Q V(h^y) \, dy < \infty$. The purpose of this note is to show that if f is BVC, then there is a single function k, which is equal to f almost everywhere on Q, such that: $\int_Q V(k_x) \, dx < \infty$ and $\int_Q V(k^y) \, dy < \infty$. This fact has already been established, \cite{3}, in the special case where f is essentially linearly continuous.

Let f be a function defined on $[a, b]$, $P: [a = \beta_0 < \beta_1 < \cdots < \beta_{m-1} < \beta_r = b]$ be a partition of $[a, b]$, and define for $x \in (\beta_{m-1}, \beta_m]$ (or $x \in [\beta_0, \beta_1]$ if $m = 1$), $m = 1, 2, \ldots, r$, the functions:

$$
\phi^+_P(f; x) = f(a) + \frac{1}{2} \sum_{i=1}^{m} \left\{ \left[f(\beta_i) - f(\beta_{i-1}) \right] + \left| f(\beta_i) - f(\beta_{i-1}) \right| \right\},
$$

$$
\phi^-_P(f; x) = -\frac{1}{2} \sum_{i=1}^{m} \left\{ \left[f(\beta_i) - f(\beta_{i-1}) \right] - \left| f(\beta_i) - f(\beta_{i-1}) \right| \right\}
$$

and if $0 \leq j < k \leq r$, $v(f; P; \beta_j, \beta_k) = \sum_{i=j+1}^{k} \left| f(\beta_i) - f(\beta_{i-1}) \right|$. The functions ϕ^+_P, ϕ^-_P are monotone, nondecreasing. The norm of P is defined as $|P| = \max \left\{ |\beta_i - \beta_{i-1}|, i = 1, 2, \cdots, r \right\}$.

Lemma. If f is a BV function on $[a, b]$ and $\{P_n\}$ is a sequence of partitions of $[a, b]$, each a refinement of its predecessor with $\lim_{n \to \infty} |P_n| = 0$, then $\lim_{n \to \infty} \phi^+_P(f; x)$ and $\lim_{n \to \infty} \phi^-_P(f; x)$ exist at all points of $[a, b]$. If these limits are designated by ϕ^+ and ϕ^- respectively, then $f = \phi^+ - \phi^-$ at all points of continuity of f and $V(\phi^+ - \phi^-) \leq V(f)$.
FUNCTIONS OF BVC TYPE

Proof. Let \(\{ P_n \} \) be a sequence of partitions of \([a, b]\), where each is a refinement of its predecessor and \(\lim_{n \to \infty} |P_n| = 0 \). Let \(x \) be any number in \([a, b]\) and let \((\alpha_n, \beta_n)\) be that subinterval of \(P_n \) which contains \(x \), \(([\alpha_n, \beta_n] \) if \(x = 0\).

Now,

\[
\phi_{P_n}^+(f; x) = f(a) + \left[f(\beta_n) - f(a) + v(f; P_n; a, \alpha_n) \right]/2
\]

\[
= f(a)/2 + f(\beta_n)/2 + v(f; P_n; a, \alpha_n)/2 + |f(\alpha_n) - f(\beta_n)|/2
\]

and

\[
\phi_{P_n}^-(f; x) = f(a)/2 - f(\beta_n)/2 + v(f; P_n; a, \alpha_n)/2 + |f(\beta_n) - f(\alpha_n)|/2.
\]

But, \(\{ \alpha_n \} \) is a monotone, nondecreasing sequence, \(\{ \beta_n \} \) is a monotone, nonincreasing sequence and \(\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = x \). Since \(f \) is BV, it follows that \(\lim_{n \to \infty} f(\beta_n) \) and \(\lim_{n \to \infty} |f(\beta_n) - f(\alpha_n)| \) exist, and \(\lim_{n \to \infty} v(f; P_n; a, \alpha_n) \) exists because \(\{ v(f; P_n; a, \alpha_n) \} \) is a monotone, nondecreasing sequence which is bounded above by the variation of \(f \) on \([a, x]\). Thus, \(\lim_{n \to \infty} \phi_{P_n}^+(f; x) \) and \(\lim_{n \to \infty} \phi_{P_n}^-(f; x) \) exist for all \(x \in [a, b] \). Clearly, \(\lim_{n \to \infty} [\phi_{P_n}^+(f; x) - \phi_{P_n}^-(f; x)] = \phi^+(f; x) - \phi^-(f; x) \) which equals \(f(x+) \) if \(x \neq \beta_n \) for any \(n = 1, 2, 3, \ldots \), and \(f(x) \) if \(x = \beta_n \) for some \(n = 1, 2, 3, \ldots \), which is just \(f(x) \) at all \(x \) which are points of continuity of \(f \). In either case, it is clear that \(V(\phi^+ - \phi^-) \leq V(f) \).

Theorem. Let \(f \) be a measurable function on the square, \(Q \), which is BVC. Then, there is a single function, \(k \), equal to \(f \) almost everywhere on \(Q \), for which the sections \(k_x \) and \(k_y \) are BV almost everywhere in \(x \) and \(y \) respectively and \(\int_0^1 V(k_x) \, dx < \infty \) and \(\int_0^1 V(k_y) \, dy < \infty \).

Proof. Since \(f \) is BVC on \(Q \), there are functions \(g \) and \(h \), equal to \(f \) almost everywhere, such that their sections \(g_x \) and \(h_y \) are BV almost everywhere in \(x \) and \(y \) respectively and for which \(\int_0^1 V(g_x) \, dx < \infty \) and \(\int_0^1 V(h_y) \, dy < \infty \).

Let \(\{ P_n \} \) be a sequence of partitions of \(I \), each one a refinement of the previous one, with the following properties: \(\lim_{n \to \infty} |P_n| = 0 \); if \(P_n: [0 = \beta_0^{a_n} \leq \beta_1^{a_n} < \beta_2^{a_n} < \cdots < \beta_{r_n}^{a_n} \leq \beta_{r_n+1}^{a_n} = 1] \), then \(\beta_1^{a_n}, \cdots, \beta_{r_n}^{a_n} \) are such that \(G(x) = g(x, \beta_i^{a_n}) \) is summable for \(n = 1, 2, 3, \ldots \) and \(i = 1, 2, \cdots, r_n \); \(\lim_{n \to \infty} \beta_i^{a_n} = 0 \); \(\lim_{n \to \infty} \beta_{r_n}^{a_n} = 1 \); and \(\beta \) is any element of \(P_n \) for all \(n = 1, 2, 3, \cdots \) for which \(g(x, \beta) \) is summable in \(x \).

For each \(n = 1, 2, 3, \cdots \), define, on the interval \({[\beta_i^{a_n}, \beta_{i+1}^{a_n}] \subset I} \), functions \(\phi_{P_n}^+(g_x, y) \) and \(\phi_{P_n}^-(g_x, y) \) exactly as described prior to the lemma where \(g_x \) is BV. Then, one defines:
\[g_p^+(x, y) = \begin{cases}
\phi_p^+(g_x, \beta_i) & \text{if } y \in [\beta_1, \beta_n] \text{ and } g_x \text{ is BV}, \\
\phi_p^+(g_x, \beta_1) & \text{if } 0 \leq y \leq \beta_1 \text{ and } g_x \text{ is BV}, \\
\phi_p^+(g_x, \beta^n_r) & \text{if } \beta^n_r \leq y \leq 1 \text{ and } g_x \text{ is BV}, \\
g(x, y) & \text{if } g_x \text{ is not BV}.
\end{cases} \]

Similarly, define \(g_{\overline{p}}^+(x, y) \) if \(g_x \) is BV and let it be 0 if \(g_x \) is not BV.

Consider now, \(g_p^+ \) and \(g_{\overline{p}}^+ \). If \(\beta_{j-1} \leq y < \beta_j \), \(2 \leq j \leq r_n \), one has that
\[
gp(x, y) = g_{x}(\beta_i) + \frac{1}{2} \sum_{i=2}^{r_n} \left[g_{x}(\beta_i) - g_{x}(\beta_{i-1}) \right] + \left| g_{x}(\beta_i) - g_{x}(\beta_{i-1}) \right|
\]
if \(g_x \) is BV, i.e. for almost all \(x \). But, since \(g(x, \beta^n_r) = g_x(\beta^n_r) \), \(i=1, 2, \cdots, r_n \) is a summable function of \(x \) for \(n=1, 2, 3, \cdots \), it follows that \(g_{\overline{p}}^+(x, y) \) is a measurable, and in fact summable, function of \((x, y) \in Q\). Similarly \(g_{\overline{p}}^+(x, y) \) is a measurable and summable function on \(Q \). Although the form of \(g_p^+ \) and \(g_{\overline{p}}^+ \) is not identical to that of \(\phi_p^+ \) and \(\phi_{\overline{p}}^+ \) in the previous lemma, the only essential distinction is that instead of a \(g_x(\beta_i) \) term, there is a \(g_x(\beta^n_r) \) term appearing, where \(g_x \) is BV. Hence, by the lemma, \(\lim_{n \to \infty} g_p^+(x, y) \) and \(\lim_{n \to \infty} g_{\overline{p}}^+(x, y) \) exist for all \((x, y) \in Q \). Let \(g^+ \) and \(g^- \) be these limits, respectively, then
\[
g^+ \text{ and } g^- \text{ are measurable since each is a limit of a sequence of measurable functions.}
\]

Suppose \(0 < \alpha < 1 \) and \(0 \leq \alpha \leq 1 \). Then, there is \(N > 0 \) so that \(n > N \) implies \(P_n \) is such that \(\beta^n_1 \leq \alpha \leq \beta^n_n \). Hence, for \(n > N \), \(g_{\overline{p}}^+(x, \alpha) - g_{\overline{p}}^+(x, \alpha) = \phi_{\overline{p}}^+(g_x, \alpha) - \phi_{\overline{p}}^+(g_x, \alpha) \) if \(g_x \) is BV, and \(g(x, \alpha) \) if \(g_x \) is not BV, and thus, by the lemma, one has that the limit, \(g^+(x, \alpha) - g^-(x, \alpha) \), is either \(g(x, \alpha) \) or \(g(x, \alpha+) \) depending upon whether \(\alpha = \beta^n_i \) for some \(j, n=1, 2, 3, \cdots \) and \(g_x \) is BV. Thus, \(g^+(x, y) - g^-(x, y) = g(x, y) \) at all points \((x, y) \in Q \) such that either \(g_x \) is not BV or \(g_e \) is BV and continuous at \(y \). Since a BV function can be discontinuous at no more than a countable number of points, if \(S \) is the set for which \(g^+ - g^- \) differs from \(g \), \(S \) is measurable since \(g^+ \), \(g^- \) and \(g \) are measurable, \(m(S_n) = 0 \) for all \(x \), where \(S_n = \{ y: (x, y) \in S \} \) and \(m(S) = \int_S m(S_n) dx, \) thus \(m(S) = 0 \). Hence, \(g^+ - g^- \) equals \(g \) almost everywhere on \(Q \) and \(g^+ \) and \(g^- \) are monotone for almost all \(x \in I \).

Also, \(V(g^+ - g^-) \leq V(g_x) \).
It is clear from the definition of g^+ and g^-, where $\beta \in \mathbb{P}_n$, $n=1, 2, 3, \ldots$, that since $|g(x, y)| \leq |g(x, \beta)| + V(g_\beta)$, it follows that both $|g^+(x, y)|$ and $|g^-(x, y)|$ are bounded by $|g(x, \beta)| + 2V(g_\beta)$ and since $V(g_\beta)$ and $g(x, \beta)$ are both summable on Ω, g^+ and g^- are also summable on Ω.

Let $(g^+)^s$ and $(g^-)^s$ be the integral means of g^+ and g^-, i.e., $(g^+)^s(x, y) = \int_0^s \int_0^s g^+(u, v) \, du \, dv$, $0 \leq x, y \leq 1$, g^+ is continued periodically and similarly for g^-. It is clear that $(g^+)_s^s$ and $(g^-)_s^s$ are monotone for all x since g^+_s and g^-_s are monotone for almost all x and it is well known that $(g^+)^s$ and $(g^-)^s$ are continuous and converge almost everywhere on Ω to g^+ and g^- as s goes to zero. Thus, $k^+ = \lim sup_{s \to 0} (g^+)^s$ and $k^- = \lim sup_{s \to 0} (g^-)^s$ have the same properties as g relative to f; i.e., $k = k^+ - k^-$ is equal almost everywhere to f, k_x is BV for almost all x, k^+_x and k^-_x are monotone and $V(k_x) \leq V(g_\beta)$ for almost all x. Thus, $\int_0^1 V(k_x) \, dx < \infty$.

By exactly the same argument with h, the same function k is obtained due to the symmetry of the integral means with respect to x and y. Thus, there is a single function, k, equal almost everywhere to f, for which k_x and k_y are BV for almost all x and y respectively, and

$$\int_0^1 V(k_x) \, dx < \infty \quad \text{and} \quad \int_0^1 V(k_y) \, dy < \infty.$$

References

Purdue University