FUNCTIONS OF BVC TYPE1,2

RICHARD E. HUGHS

Let \(f \) be a measurable function defined on the closed unit square \(Q = I \times I, I = [0, 1] \). For every \(x \in I \), let \(f_x \) be the function of \(y \) defined by \(f_x(y) = f(x, y) \) and for every \(y \in I \), let \(f^* \) be the function of \(x \) defined by \(f^*(x) = f(x, y) \). Let \(V(f_x) \) and \(V(f^*) \) be the variations of \(f_x \) and \(f^* \) on \(I \), respectively. The function \(f \) is said to be BVC (of bounded variation in the sense of Tonelli and Cesari \([1; 2]\)), if there are functions \(g \) and \(h \), which are equal to \(f \) almost everywhere on \(Q \), such that:
\[
V(g_x) < \infty \text{ for almost all } x \in I, \ V(h^*_y) < \infty \text{ for almost all } y \in I, \\
\int_0^1 V(g_x) \, dx < \infty \text{ and } \int_0^1 V(h^*_y) \, dy < \infty.
\]
The purpose of this note is to show that if \(f \) is BVC, then there is a single function \(k \), which is equal to \(f \) almost everywhere on \(Q \), such that:
\[
\int_0^1 V(k_x) \, dx < \infty \text{ and } \int_0^1 V(k^*_y) \, dy < \infty.
\]
This fact has already been established, \([3]\), in the special case where \(f \) is essentially linearly continuous.

Let \(f \) be a function defined on \([a, b]\),

\[P : [a = \beta_0 < \beta_1 < \cdots < \beta_{m-1} < \beta_m = b] \]

be a partition of \([a, b]\), and define for \(x \in (\beta_{m-1}, \beta_m], (x \in [\beta_0, \beta_1] \text{ if } m = 1), m = 1, 2, \cdots, r\), the functions:

\[
\phi_P^+(f; x) = f(a) + \frac{1}{2} \sum_{i=1}^m \{ [f(\beta_i) - f(\beta_{i-1})] + |f(\beta_i) - f(\beta_{i-1})| \},
\]

\[
\phi_P^-(f; x) = \frac{1}{2} \sum_{i=1}^m \{ [f(\beta_i) - f(\beta_{i-1})] - |f(\beta_i) - f(\beta_{i-1})| \}
\]

and if \(0 \leq j < k \leq r \), \(v(f; P; \beta_j, \beta_k) = \sum_{j=1}^k |f(\beta_i) - f(\beta_{i-1})| \). The functions \(\phi_P^+, \phi_P^- \) are monotone, nondecreasing. The norm of \(P \) is defined as \(|P| = \max [|\beta_i - \beta_{i-1}|, i = 1, 2, \cdots, r] \).

Lemma. If \(f \) is a BVC function on \([a, b]\) and \(\{P_n\} \) is a sequence of partitions of \([a, b]\), each a refinement of its predecessor with \(\lim_{n \to \infty} |P_n| = 0 \), then \(\lim_{n \to \infty} \phi_P^+(f; x) \) and \(\lim_{n \to \infty} \phi_P^-(f; x) \) exist at all points of \([a, b]\). If these limits are designated by \(\phi^+ \) and \(\phi^- \) respectively, then \(f = \phi^+ - \phi^- \) at all points of continuity of \(f \) and \(V(\phi^+ - \phi^-) \leq V(f) \).

Presented to the Society, November, 26, 1960; received by the editors November 12, 1960.

\footnote{This paper is a portion of a thesis, directed by Professor Casper Goffman, to be submitted to Purdue University in partial fulfillment of the requirements for the degree of Doctor of Philosophy.}

\footnote{This research was sponsored by the National Science Foundation, grant number G-5867.}

698
Proof. Let \(\{P_n\} \) be a sequence of partitions of \([a, b]\), where each is a refinement of its predecessor and \(\lim_{n \to \infty} |P_n| = 0 \). Let \(x \) be any number in \([a, b]\) and let \((\alpha_n, \beta_n) \) be that subinterval of \(P_n \) which contains \(x \), (\([\alpha_n, \beta_n]\) if \(x = 0 \)).

Now,

\[
\phi^+_n(f; x) = f(a) + \frac{\left[f(\beta_n) - f(a) + v(f; P_n; a, \beta_n) \right]}{2} = \frac{f(a)}{2} + \frac{f(\beta_n)}{2} + \frac{v(f; P_n; a, \alpha_n)}{2} + \frac{|f(\alpha_n) - f(\beta_n)|}{2}
\]

and

\[
\phi^-_n(f; x) = f(a)/2 - f(\beta_n)/2 + v(f; P_n; a, \alpha_n)/2 + |f(\beta_n) - f(\alpha_n)|/2.
\]

But, \(\{\alpha_n\} \) is a monotone, nondecreasing sequence, \(\{\beta_n\} \) is a monotone, nonincreasing sequence and \(\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = x \). Since \(f \) is BV, it follows that \(\lim_{n \to \infty} f(\beta_n) \) and \(\lim_{n \to \infty} |f(\beta_n) - f(\alpha_n)| \) exist, and \(\lim_{n \to \infty} v(f; P_n; a, \alpha_n) \) exists because \(\{v(f; P_n; a, \alpha_n)\} \) is a monotone, nondecreasing sequence which is bounded above by the variation of \(f \) on \([a, x]\). Thus, \(\lim_{n \to \infty} \phi^+_n(f; x) \) and \(\lim_{n \to \infty} \phi^-_n(f; x) \) exist for all \(x \in [a, b] \). Clearly, \(\lim_{n \to \infty} \left[\phi^+_n(f; x) - \phi^-_n(f; x) \right] = \phi^+(x) - \phi^-(x) \) which equals \(f(x+) \) if \(x \neq \beta_n \) for any \(n = 1, 2, 3, \ldots \), and \(f(x) \) if \(x = \beta_n \) for some \(n = 1, 2, 3, \ldots \), which is just \(f(x) \) at all \(x \) which are points of continuity of \(f \). In either case, it is clear that \(V(\phi^+ - \phi^-) \leq V(f) \).

Theorem. Let \(f \) be a measurable function on the square, \(Q \), which is BV. Then, there is a single function, \(k \), equal to \(f \) almost everywhere on \(Q \), for which the sections \(k_x \) and \(k_y \) are BV almost everywhere in \(x \) and \(y \) respectively and \(\int_0^\infty V(k_x)dx < \infty \) and \(\int_0^\infty V(k_y)dy < \infty \).

Proof. Since \(f \) is BV on \(Q \), there are functions \(g \) and \(h \), equal to \(f \) almost everywhere, such that their sections \(g_x \) and \(h_y \) are BV almost everywhere in \(x \) and \(y \) respectively and for which \(\int_0^\infty V(g_x)dx < \infty \) and \(\int_0^\infty V(h_y)dy < \infty \).

Let \(\{P_n\} \) be a sequence of partitions of \(I \), each one a refinement of the previous one, with the following properties: \(\lim_{n \to \infty} |P_n| = 0 \); if \(P_n: [0 = \beta_0 < \beta_1 < \cdots < \beta_{n+1} = 1] \), then \(\beta_1, \ldots, \beta_n \) are such that \(G(x) = g(x, \beta^a_i) \) is summable for \(n = 1, 2, 3, \ldots \) and \(i = 1, 2, \cdots, r_n \); \(\lim_{n \to \infty} \beta_1 = 0 \); \(\lim_{n \to \infty} \beta_n = 1 \); and \(\beta \) is any element of \(P_n \) for all \(n = 1, 2, 3, \cdots \) for which \(g(x, \beta) \) is summable in \(x \).

For each \(n = 1, 2, 3, \cdots \), define, on the interval \([\beta_i, \beta_{i+1}] \subset I \), functions \(\phi^+_n(g_x, y) \) and \(\phi^-_n(g_x, y) \) exactly as described prior to the lemma where \(g_x \) is BV. Then, one defines:
Similarly, define \(\phi_{P_n}(x, y) \) if \(g_x \) is BV and let it be 0 if \(g_x \) is not BV.

Consider now, \(\phi_{P_n}^+(x, y) \) and \(\phi_{P_n}^-(x, y) \). If \(\beta_{j-1} < y \leq \beta_j \), \(2 \leq j \leq r_n \), one has that

\[
\phi_{P_n}^+(x, y) = g_x(\beta_j)
\]

if \(g_x \) is BV, i.e. for almost all \(x \). But, since \(g(x, \beta_j) = g_x(\beta_j) \), \(i=1, 2, \ldots, r_n \) is a summable function of \(x \) for \(n = 1, 2, 3, \ldots \), it follows that \(\phi_{P_n}^+(x, y) \) is a measurable, and in fact summable, function of \((x, y) \in \Omega \). Similarly \(\phi_{P_n}^-(x, y) \) is a measurable and summable function on \(\Omega \). Although the form of \(\phi_{P_n}^+ \) and \(\phi_{P_n}^- \) in the previous lemma, the only essential distinction is that instead of a \(g_x(\beta_i) \) term, there is a \(g_x(\beta_i) \) term appearing, where \(g_x \) is BV. Hence, by the lemma, limit \(n \to \infty \) \(\phi_{P_n}(x, y) \) and limit \(n \to \infty \) \(\phi_{P_n}^-(x, y) \) exist for all \((x, y) \in \Omega \). Let \(g^+ \) and \(g^- \) be these limits, respectively, then \(g^+ \) and \(g^- \) are measurable since each is a limit of a sequence of measurable functions.

Suppose \(0 < \alpha < 1 \) and \(0 \leq x \leq 1 \). Then, there is \(N > 0 \) so that \(n > N \) implies \(P_n \) is such that \(\beta_j, \beta_{j+1} \leq \beta_i \leq \beta_n \). Hence, for \(n > N \), \(g_{P_n}^+(x, \alpha) - g_{P_n}^-(x, \alpha) \) is equal to \(\phi_{P_n}^+(x, \alpha) - \phi_{P_n}^-(x, \alpha) \) if \(g_x \) is BV, and \(g(x, \alpha) \) if \(g_x \) is not BV, and thus, by the lemma, one has that the limit, \(g^+(x, \alpha) - g^-(x, \alpha) \), is either \(g(x, \alpha) \) or \(g(x, \alpha^+) \) depending upon whether \(\alpha = \beta_j \) for some \(j \), \(n = 1, 2, 3, \ldots \) and \(g_x \) is BV. Thus, \(g^+(x, y) - g^-(x, y) = g(x, y) \) at all points \((x, y) \in \Omega \) such that either \(g_x \) is not BV or \(g_x \) is BV and continuous at \(y \). Since a BV function can be discontinuous at no more than a countable number of points, if \(S \) is the set for which \(g^+ - g^- \) differs from \(g \), \(S \) is measurable since \(g^+ \), \(g^- \) and \(g \) are measurable, \(m(S_x) = 0 \) for all \(x \), where \(S_x = \{ y : (x, y) \in S \} \) and \(m_2(S) = \int_0^1 m(S_x) dx \), thus \(m_2(S) = 0 \). Hence, \(g^+ - g^- \) equals \(g \) almost everywhere on \(Q \) and \(g_{P_n}^+ \) and \(g_{P_n}^- \) are monotone for almost all \(x \in I \). Also, \(V(g_{P_n}^+ - g_{P_n}^-) \leq V(g_x) \).
It is clear from the definition of \(g^+ \) and \(g^- \), where \(\beta \in P_n \), \(n = 1, 2, 3, \ldots \), that since \(|g(x, \beta)| \leq |g(x, y)| + V(g_x) \), it follows that both \(|g^+(x, y)| \) and \(|g^-(x, y)| \) are bounded by \(|g(x, \beta)| + 2V(g_x) \) and since \(V(g_x) \) and \(g(x, \beta) \) are both summable on \(Q \), \(g^+ \) and \(g^- \) are also summable on \(Q \).

Let \((g^+)^s\) and \((g^-)^s\) be the integral means of \(g^+ \) and \(g^- \), i.e.,
\[
(g^+)^s(x, y) = \frac{1}{s^2} \int_{x-s}^{x+s} \int_{y-s}^{y+s} g^+(u, v) \, du \, dv, \quad 0 \leq x, y \leq 1,
\]
and similarly for \(g^- \). It is clear that \((g^+)^s\) and \((g^-)^s\) are monotone for all \(x \) since \(g^+_x \) and \(g^-_x \) are monotone for almost all \(x \) and it is well known that \((g^+)^s\) and \((g^-)^s\) are continuous and converge almost everywhere on \(Q \) to \(g^+ \) and \(g^- \) as \(s \) goes to zero. Thus, \(k^+ = \lim \sup_{s \to 0} (g^+)^s \) and \(k^- = \lim \sup_{s \to 0} (g^-)^s \) have the same properties as \(g \) relative to \(f \); i.e., \(k = k^+ - k^- \) is equal almost everywhere to \(f \), \(k_x \) is BV for almost all \(x \), \(k^+_x \) and \(k^-_x \) are monotone and \(V(k_x) \leq V(g_x) \) for almost all \(x \). Thus,
\[
\int_0^1 V(k_x) \, dx < \infty.
\]

By exactly the same argument with \(h \), the same function \(k \) is obtained due to the symmetry of the integral means with respect to \(x \) and \(y \). Thus, there is a single function, \(k \), equal almost everywhere to \(f \), for which \(k_x \) and \(k_y \) are BV for almost all \(x \) and \(y \) respectively, and
\[
\int_0^1 V(k_x) \, dx < \infty \quad \text{and} \quad \int_0^1 V(k_y) \, dy < \infty.
\]

References

Purdue University