ON THE SUM OF THE ELEMENTS IN THE CHARACTER TABLE OF A FINITE GROUP

LOUIS SOLOMON

In this note we prove an inequality governing the sum of the elements in the character table of a finite group.

Theorem. Let G be a finite group of order g. Let χ_1, \ldots, χ_k be the absolutely irreducible characters of G and let G_1, \ldots, G_k be representatives for the classes of conjugate elements. Let h be the order of a maximal abelian normal subgroup of G and let

$$s = \sum_{i=1}^{k} \sum_{j=1}^{k} \chi_i(G_j)$$

be the sum of the elements in the character table. Then s is a rational integer and

$$h \leq s \leq g.$$

We have equality $s=g$ if and only if G is nilpotent of class two, and equality $s=h$ if and only if G is abelian.

Proof. Let $G \to \psi(G)$ be the permutation representation of G defined by inner automorphisms

$$\psi(G)X = GXG^{-1}, \quad G, X \in G$$

and let ν be the character of ψ. We may write $\nu = \sum_{i=1}^{k} c_i \chi_i$, where the c_i are non-negative rational integers. Since $\nu(G_j)$ is the order of the normalizer of G_j we have $\nu(G_j) = g/k_j$ where k_j is the number of conjugates of G_j. It follows from the orthogonality relations that

$$c_i = \frac{1}{g} \sum_{G \in G} \nu(G) \chi_i(G) = \sum_{j} \chi_i(G_j).$$

Let x_i be the degree of χ_i. Since the c_i are non-negative and ν is a character of degree g, it follows that

$$g = \sum_{i} c_i x_i \geq \sum_{i} c_i = s.$$

Thus s is a rational integer and $s \leq g$. Equality holds if and only if $c_i = 0$ whenever $x_i > 1$. Thus equality holds if and only if all the irreducible constituents of ν have degree one. We shall see that this is the case if and only if the commutator subgroup G' is included in the

Received by the editors December 5, 1960.

962
center Z of G, and hence if and only if G is nilpotent of class two.
If all the irreducible constituents of ν are characters λ of degree one,
then $\lambda(G) = 1$ for all $G \in \mathcal{G}'$ implies $\nu(G) = g$ for all $G \in \mathcal{G}'$ and thus $\mathcal{G}' \subseteq Z$. Suppose conversely that $\mathcal{G}' \subseteq Z$. Let x_i be a matrix representation of G with character χ_i. Then Schur's Lemma implies $x_i(Z)$ is a multiple of the identity matrix for all $Z \in Z$ and thus $\chi_i(Z) = \omega_i(Z)x_i$ where $\omega_i(Z)$ is a root of unity. Thus for $X, Y \in \mathcal{G}$ we have

$$g = \nu(XX^{-1}Y^{-1}) = \sum_i c_i x_i \omega_i(XX^{-1}Y^{-1}).$$

On the other hand $g = \sum_i c_i x_i$. We use the following familiar property of roots of unity: If $\epsilon_1, \ldots, \epsilon_r$ are roots of unity and $\sum_i \epsilon_i = r$ then $\epsilon_i = 1$ for $i = 1, \ldots, r$. Thus, in our case, $c_i \neq 0$ implies $\omega_i(XX^{-1}Y^{-1}) = 1$ and hence $\chi_i(XX^{-1}Y^{-1}) = x_i$ for all $X, Y \in \mathcal{G}$. From the formula [2]

$$\chi_i(X) \overline{\chi_i(X)} = \frac{x_i}{g} \sum_{Y \in \mathcal{G}} \chi_i(XX^{-1}Y^{-1})$$

we see that $c_i \neq 0$ implies $|\chi_i(X)|^2 = x_i^2$ for all $X \in \mathcal{G}$ and then $g = \sum_{X \in \mathcal{G}} |\chi_i(X)|^2 = g x_i^2$ shows $x = 1$. Thus all the irreducible constituents of ν have degree one and $s = g$.

To show that $s \geq h$, let $x = \max_i x_i$. Then a theorem of Itô [1] shows $x \leq g/h$. But then, since $c_i \geq 0$ we have

$$s = \sum_i c_i \geq \sum_i c_i \frac{x_i}{x} = \frac{g}{x} \geq h.$$