CONTINUOUS FUNCTIONS DEFINED ON PRODUCT-SPACES

WOLFGANG M. SCHMIDT

1. The results. The most concrete result of this paper is

Theorem 1. Let \(f(x, y) \) be a continuous double-periodic function satisfying \(f(x+1, y) = f(x, y+1) = f(x, y) \). Let \(\alpha, \beta \) be arbitrary. Then there exist \(x, y, \tilde{y} \) having

\[
f(x, y) = f(x, y + \beta) = f(x + \alpha, \tilde{y}) = f(x + \alpha, \tilde{y} + \beta).
\]

Thus \(f \) maps the vertices of a certain parallelogram into a single number. In [1] I proved the theorem in special cases and showed that it has an application to continuous functions on the 3-sphere. In [1] I also showed that the theorem would no longer be true if one would ask for \(y = \tilde{y} \).

More generally, we say a class \(\sigma_k \) of \(k \)-tuples of points in a compact topological space \(S \) has property \(p \), if every real-valued map \(f \) of \(S \) maps all the points of a \(k \)-tuple \(\Sigma \in \sigma_k \) into a single point. Here and throughout the paper, compact means sequentially compact. Thus if \(S \) is the \(n \)-sphere \(S^n \) and \(\sigma_{n+1} \) the class of orthogonal \((n+1)\)-tuples on \(S \), then the Kakutani-Yamabe-Yujobo-Theorem states that \(\sigma_{n+1} \) has property \(p \).

We call the topological product of a line with \(S \) cylinder over \(S \) and denote it by \(C(S) \). Points of \(C(S) \) will be written \((x, X)\), where \(x \) is a real number, \(X \in S \). A continuous curve in \(C(S) \), \(x(t), X(t), -\infty < t < \infty \), will be called a rain over \(S \) if \(x(t) \) tends to \(\pm \infty \) when \(t \) tends to \(\pm \infty \). A roof over \(S \) is a compact set in \(C(S) \) which has a nonempty intersection with every rain over \(S \). A class \(\sigma_k \) of \(k \)-tuples in \(S \) has property \(P \) if to any roof \(R \) over \(S \) there exists a \(k \)-tuple \(\Sigma \in \sigma_k \) and an \(x \) such that

\[
(x, X) \in R \quad \text{for every} \quad X \in \Sigma_R.
\]

Since every real-valued map \(f \) of a compact space \(S \) is associated with the roof \((f(X), X)\), property \(P \) implies \(p \).

Now let \(X_1, \ldots, X_{n+1} \) be an \((n+1)\)-tuple of points on the \(n \)-sphere \(S^n \) whose spherical distances satisfy

\[
d(X_i, X_j) = d(X_1, X_j) \quad (1 \leq i < j \leq n + 1).
\]

Let \(\tau_{n+1} \) be the class of \((n+1)\)-tuples obtained by applying a rotation

Received by the editors December 13, 1960.

918
to our particular \(X_1, \ldots, X_{n+1} \). Then the methods of Yamabe-Yujobo [2] show that \(\tau_{n+1} \) has property \(P \).

We say a sequence \(\Sigma_1, \Sigma_2, \ldots \) of \(k \)-tuples is convergent to a \(k \)-tuple \(\Sigma \), if the elements \(X_{i1}, X_{i2}, \ldots, X_{ik} \) of \(\Sigma_i \) and \(X_1, \ldots, X_k \) of \(\Sigma \) can be arranged in such a way that \(\lim X_{ij} = X_j \) (\(j = 1, \ldots, k \)). We call a class \(\sigma_k \) closed if the limit of any convergent sequence of \(k \)-tuples of \(\sigma_k \) is again in \(\sigma_k \).

If \(\sigma_k \) is a class of \(k \)-tuples in \(S \) and \(\tau_l \) a class of \(l \)-tuples in \(T \), then we define \(\sigma \times \tau \) to be the class of the following \(k \cdot l \)-tuples in the topological product \(S \times T \). The \(k \cdot l \)-tuples of \(\sigma \times \tau \) consist of all pairs of the type \((X, Y)\), where \(X \) runs through a \(k \)-tuple \(\Sigma \) of \(\sigma_k \) and, for given \(X \), \(Y \) runs through an \(l \)-tuple \(T_X \) of \(\tau_l \). For example, if \(S = T \) is the space of real numbers modulo 1 and \(\sigma_2(\alpha) \) the class of pairs \((x, x')\) having \(x - x' = \alpha \), then \(\sigma_4(\alpha, \beta) = \sigma_2(\alpha) \times \sigma_2(\beta) \) consists of quadruples \((x, y), (x, y + \beta), (x + \alpha, y), (x + \alpha, y + \beta)\).

Theorem 2. Assume \(\sigma_k \) has property \(P \) in \(S \), \(\tau_l \) has property \(P \) in \(T \) and \(\tau_l \) is closed. Then \(\sigma \times \tau \) has property \(P \) in \(S \times T \).

It appears to be difficult to generalize our results to maps \(f \) into \(\mathbb{R}^n \) and to prove the following generalization of the Borsuk-Ulam Theorem: Let \(X \rightarrow -X \) be the antipodal map in \(S^n \) and let \(f \) be a map of \(S^n \times S^n \) into \(\mathbb{R}^n \). Then there exist \(X, Y, \overline{Y} \) in \(S^n \) having \(f(X, Y) = f(X, -Y) = f(-X, Y) = f(-X, -Y) \).

2. The proofs.

Lemma 1. Assume \(R \) is a roof over \(S \times T \) and let \(x(t), X(t) \) be a rain \(N \) over \(S \). Then the set \(G(N) \) of points \((t, Y)\) of \(C(T) \) where

\[
(x(t), X(t), Y) \in R
\]

forms a roof over \(T \).

Proof. If \((t_n, Y_n)\) is a sequence in \(G(N) \), then \((x(t_n), X(t_n), Y_n) \in R \) has a subsequence convergent to some \((x, X, Y) \in R \). For this subsequence \(x(t_n) \), and therefore \(t_n \), is bounded, and \(t_n \) will have a limit-point \(t_0 \) where \(x = x(t_0) \), \(X = X(t_0) \). Thus \((t_0, Y)\) will be a limit-point of \((t_n, Y_n)\) in \(G(N) \), and \(G(N) \) is compact.

Thus if \(G(N) \) were not a roof, there would exist a rain \(t(s), Y(s) \) over \(T \), having no point in \(G \). Then \(x(t(s)), X(t(s)), Y(s) \) would be a rain over \(S \times T \) with no point in \(R \).

Lemma 2. Let \(R \) be a roof over \(S \times T \) and assume \(\tau_l \) of \(T \) is closed and has property \(P \). Then the set \(H \) of points \((x, X)\) in \(C(S) \) such that for suitable \(T(x, X) \in \tau \)
(x, X, Y) ∈ R for every Y ∈ T

is a roof over S.

Proof. By $R^{(i)}$ denote the set of points (x, X, Y_1, \ldots, Y_l) of $C(S \times T \times \cdots \times T)$ such that $(x, X, Y_j) \in R$ ($j=1, \ldots, l$) and Y_1, \ldots, Y_l is an l-tuple of τ_l. It follows from the compactness of R and the closedness of τ_l that $R^{(i)}$ is compact. (x, X) is in H if and only if there exist Y_1, \ldots, Y_l with $(x, X, Y_1, \ldots, Y_l) \in R^{(i)}$. Therefore H is compact.

Now let N be a rain over S. Then $G(N)$ is a roof over T and there exists some t and some $T \in \tau$ such that $(t, Y) \in G$ for every $Y \in T$. Then $(x(t), X(t), Y) \in R$ for every $Y \in T$ and N has a common point with H.

Proof of Theorem 2. Assume the hypotheses of the theorem to be satisfied. Construct H as in Lemma 2. By the property of σ, there exists a $\Sigma \subseteq \sigma$ and some x such that

$$(x, X) \in H \quad \text{for every} \quad X \in \Sigma.$$ Then $(x, X, Y) \in R$ for $X \in \Sigma$, $Y \in T_X$ and Theorem 2 is proved.

Proof of Theorem 1. If S is the space of real numbers modulo 1 and $\sigma_2(\alpha)$ is defined as before, then $\sigma_2(\alpha)$ has property P. This is the one-dimensional case of the generalized Yamabe-Yujobo Theorem. Furthermore, σ_2 is closed. Theorem 1 is a consequence of these facts and Theorem 2.

References

University of Colorado