\[\sum_{j=0}^{m} \sum_{k=0}^{n} \binom{m}{j} \binom{n}{k} \frac{B_j B_k}{m + n - j - k + 1} = (-1)^{m-1} \frac{m! n!}{(m + n)!} B_{m+n} \quad (m + n \text{ even, } mn > 0). \]

References

Duke University

MINKOWSKI'S THEOREM ON NONHOMOGENEOUS APPROXIMATION

IVAN NIVEN

For \(\theta \) irrational, let \(\gamma = \theta a + b \) has no solution in integers \(a \) and \(b \). We give a short proof of Minkowski's classic result that there are infinitely many pairs of integers satisfying \(F < 1/4 \), where \(F = F(\theta, \gamma, x, \gamma) = |x| \cdot |\theta x + y + \gamma| \). First we prove that given any real numbers \(\alpha \) and \(\beta \) there exists an integer \(u \) such that \(|u - \beta| < 1 \) and such that at least one of the following holds:

(A) \(|u - \alpha| \cdot |u - \beta| \leq 1/4 \); \(|u - \alpha| \cdot |u - \beta| \leq |\beta - \alpha| / 2 \).

If \(\beta \) is an integer, set \(u = \beta \). Otherwise define the integer \(n \) by \(n < \beta < n + 1 \). If \(n \leq \alpha \leq n + 1 \) then \(|n - \alpha| \cdot |n + 1 - \alpha| \leq 1/4 \) and similarly for \(\beta \), and so

\[|n - \alpha| \cdot |n - \beta| \cdot |n + 1 - \alpha| \cdot |n + 1 - \beta| \leq 1/16. \]

Hence \(u = n \) or \(u = n + 1 \) gives inequality (A1). The cases \(n > \alpha \) and \(\alpha > n + 1 \) are symmetric, and we treat \(n > \alpha \). We note that

\[2(n - \alpha)^{1/2}(n + 1 - \beta)^{1/2}(\beta - n)^{1/2}(n + 1 - \alpha)^{1/2} \leq (n - \alpha)(n + 1 - \beta) + (\beta - n)(n + 1 - \alpha) = \beta - a \]

Received by the editors April 14, 1961.

1 Supported in part by the Office of Naval Research.
and so (A₂) must hold for \(u = n \) or \(u = n + 1 \).

Now by the pigeon-hole method \([1, p. 1 \text{ or } 2, p. 42]\) it is known that there exist infinitely many pairs of integers \(h, k \) such that
\[
|k| \cdot |k\theta - h| < 1.
\]
For each such pair choose integers \(r, s \) such that
\[
|rh - sk + \gamma k| \leq 1/2.
\]
Apply (A) with
\[
\alpha = \frac{r}{k}
\]
and
\[
\beta = \frac{(r\theta - s + \gamma)/(k\theta - h)}{\theta},
\]
and define
\[
x = r - uk, \quad y = -s + uh.
\]
Then we get
\[
|\theta x + y + \gamma| < |k\theta - h|
\]
and \(F < 1/4 \) from (A₁), \(F \leq 1/4 \) from (A₂). Since \(k\theta - h \) can be made arbitrarily small, and since \(\theta x + y + \gamma \neq 0 \), we get infinitely many pairs \(x, y \) satisfying \(F \leq 1/4 \). But at most one pair can give \(F = 1/4 \), because
\[
\theta x_1 + y_1 + \gamma = \pm (4x_1)^{-1} \quad \text{and} \quad \theta x_2 + y_2 + \gamma = \pm (4x_2)^{-1}
\]
would imply the rationality of \(\theta(x_1 - x_2) + y_1 - y_2 \) and hence of \(\theta \). This proof can be readily extended to Minkowski’s theorem on the product of two linear forms, as will be shown elsewhere. A proof that \(1/4 \) is the best possible constant is given in \([1, p. 49]\).

References

University of Oregon