Baire spaces cannot be removed. If Q is the space of rationals in E_1 with the relative topology, there is a separately continuous $f: Q \times Q \to E_1$ which is zero on a dense subset of $Q \times Q$ but not identically zero.

Reference

Purdue University

COMPLETE SEQUENCES OF FUNCTIONS

CASPER GOFFMAN

Although the result of this note is implicitly contained in the work of A. A. Talalyan [2] and could also have been a corollary to the theorem in [1], it seems to be of sufficient interest to merit explicit treatment.

It is known (see [1]) that if $\{f_1, f_2, \ldots, f_n, \ldots\}$ is a sequence of measurable functions which is complete in the space M of measurable functions (i.e., every measurable f is the limit in measure of a sequence of finite linear combinations of $\{f_1, f_2, \ldots, f_n, \ldots\}$) then $\{f_n, f_n, \ldots, f_n, \ldots\}$ is also complete in M.

Let X be a separable Banach space of measurable functions on $[a, b]$ such that for every measurable $G \subseteq [a, b]$, with $m(G)>0$, the set X_G of restrictions of the functions in X to G is a Banach space and

(a) If $\{g_n\}$ converges to g in X then $\{g_n\}$ converges to g in X_G,

(b) The set of bounded measurable functions is a dense subset of X; hence, of X_G, for every G,

(c) For every G, uniform convergence on G implies convergence in X_G and convergence in X_G implies convergence in measure on G.

Theorem. If $\{f_1, f_2, \ldots, f_n, \ldots\}$ is complete in X and $\epsilon>0$, there is a measurable $G \subseteq [a, b]$, with $m(G)>\ (b-a)-\epsilon$, such that $\{f_2, f_2, \ldots, f_n, \ldots\}$ is complete in X_G.

Proof. Let $\{g_1, g_2, \ldots, g_n, \ldots\}$ be dense in X. Since $\{f_1, f_2, \ldots, f_n, \ldots\}$ is complete in X, it follows from (b), (c) and

Received by the editors July 18, 1961.

1 Supported by National Science Foundation Grant NSF-G18920.
the fact that the bounded functions are dense in M, that
\[\{f_1, f_2, \ldots, f_m, \ldots\} \] is complete in M. It follows from [1] that
for every n, there is a sequence \(\{\phi_1, \phi_2, \ldots, \phi_m, \ldots\} \) of finite linear
combinations of \(\{f_2, f_3, \ldots, f_n, \ldots\} \) which converges in measure to
\(g_n \), and so has a subsequence \(\{\psi_1, \psi_2, \ldots, \psi_m, \ldots\} \) which converges
uniformly to \(g_n \) on a measurable set \(G_n \), with \(m(G_n) > (b-a) - \epsilon/2^n \).
Let \(G = \bigcap_{n=1}^{\infty} G_n \). Since uniform convergence on \(G \) implies convergence
in \(X_\sigma \) by (a), and since \(\{g_1, g_2, \ldots, g_n, \ldots\} \) is dense in \(X_\sigma \) by (c),
it follows that \(\{f_2, f_3, \ldots, f_n, \ldots\} \) is complete in \(X_\sigma \).

If \(X = L_2[a, b] \), then \(X_\sigma = L_2(G) \), so that we have:

Corollary. If \(\{f_1, f_2, \ldots, f_n, \ldots\} \) is complete for \(L_2[a, b] \) and
\(\epsilon > 0 \) there is a measurable \(G \subset [a, b] \), \(m(G) > (b-a) - \epsilon \) such that
\(\{f_2, f_3, \ldots, f_n, \ldots\} \) is complete for \(L_2(G) \).

References

1. C. Goffman and D. Waterman, *Basic sequences in the space of measurable func-
2. A. A. Talalyan, *Representing of measurable functions by series*, Uspehi Mat.

Purdue University