THE POWER OF TOPOLOGICAL TYPES OF SOME
CLASSES OF 0-DIMENSIONAL SETS

M. REICHBACH

By a result of Mazurkiewicz and Sierpinski, there exist \(\aleph_1 \) topological types of compact and countable sets. Since a countable set is 0-dimensional, there arises a natural question: what is the power of topological types of other classes of 0-dimensional sets? In this paper we consider separable metric spaces only. Every 0-dimensional space being topologically contained in the Cantor set \(C \), we confine ourselves to subsets of this set.

We prove the following three theorems:

Theorem 1. There exist two topological types of open subsets of the Cantor set \(C \).

Theorem 2. There exist \(\aleph_0 \) topological types of closed subsets of the Cantor set \(C \).

Theorem 3. There exist \(\ell \aleph_0 \) topological types of 0-dimensional \(G_\delta \) sets which are dense in themselves.

Theorem 1 is known in part, but it seems to the author that an exact proof of it has not been published so far. Theorems 2 and 3 are new; the latter gives an answer to a problem by Knaster and Urbanik.

The paper contains also some lemmas on homeomorphisms and a notion of a rank \(r_p(B) \) of a point \(p \) relative to the set \(B \).

1. In this section a lemma on homeomorphisms and the above Theorem 1 are proved.

Lemma 1. Let \(\{ F_n \} \) and \(\{ G_n \} \) be two sequences of sets satisfying

1. \(F_n \cap F_m = 0 = G_n \cap G_m \) for \(n \neq m \),
2. for every \(n \) the set \(F_n \) is open in the union \(F = \bigcup_{n=1}^\infty F_n \) and \(G_n \) is open in \(G = \bigcup_{n=1}^\infty G_n \), and
3. for every \(n \) there exists a homeomorphism \(h_n \) such that \(h_n(F_n) = G_n \), \(n = 1, 2, \ldots \).

Then the mapping \(h \) defined by \(h(x) = h_n(x) \) for \(x \in F_n \) is a homeomorphism between \(F \) and \(G \).

Received by the editors July 21, 1960 and, in revised form, December 6, 1960.

1 See [6, p. 22].
2 See [4, p. 173].
3 Some general hints may be found in [3, p. 198].
4 See [3, p. 198].
Proof. By (1) and (3), h is a one-to-one mapping of F onto G. Since the proofs of the continuity of h and h^{-1} are symmetric, we shall show that h is continuous.

Indeed, let $\{x_n\}$ be a sequence of points belonging to F, tending to a point x of F: $x_n \to x$. Since $x \in F$, there exists a number n_0 such that $x_n \in F_{n_0}$. Now by (2) there exists a number N such that for $n > N$ there is $x_n \in F_{n_0}$ (since otherwise the set F_{n_0} would not be open in F). But h_{n_0} is continuous—as a homeomorphism—and therefore for $n > N$:

$$h(x_n) = h_{n_0}(x_n) \to h_{n_0}(x) = h(x).$$

Remark 1. Let F_n be the plane set defined by $F_n = \{(x, y) : x = 1/n, 0 < y < 1\}$ and put $G_n = \{(x, y) : x = 0; 0 < y < 1\}$ and $G_{n+1} = F_n$, $n = 1, 2, \ldots$. For these sets the assumption (2) of the lemma is not satisfied for the set G_1 only and evidently $F = \bigcup_{n=1}^{\infty} F_n$ is not homeomorphic with $G = \bigcup_{n=1}^{\infty} G_n$, since G is a compact set and F is not. This shows also that assumption (2) of the lemma cannot be replaced by the assumption that F_n and G_n are compact and $\rho(F_n, F_m)$ and $\rho(G_n, G_m)$ are positive for all $n \neq m$.

To prove Theorem 1 it suffices to show that:

Every open subset of the Cantor set C is either homeomorphic to C or to C without the zero point: $C \setminus \{0\}$.

Proof. Let G be an open subset of the Cantor set C. Then G can be written in the form:

$$G = G_1 \cup G_2 \cup \cdots, G_n \cap G_m = 0 \text{ for } n \neq m,$$

where the sets G_n are closed and open in C.

Now two cases are possible:

(a) G is a finite union of the sets G_n, i.e. there exists an integer N such that $G_n = 0$ for $n > N$, and

(b) all the sets G_n in (4) are nonempty.

Since

(5) a closed and open subset of the Cantor set C is a perfect set, we see that in case (a) the set G is a perfect 0-dimensional set and therefore homeomorphic to the Cantor set C.

In case (b) we can write the set $C \setminus \{0\}$ analogically as in (4) in the form:

$$C \setminus \{0\} = F_1 \cup F_2 \cup \cdots, F_n \cap F_m = 0 \text{ for } n \neq m,$$

where the sets F_n are nonempty and closed and open in C.

By (5) there exists for every n a homeomorphism h_n between F_n and G_n and therefore by (4) and (6) the assumptions of the lemma hold.

* By $\rho(F_n, F_m)$ we understand the distance between the sets F_n and F_m, i.e. $\rho(F_n, F_m) = \inf_{x \in F_n, y \in F_m} \rho(x, y)$, where $\rho(x, y)$ denotes the distance between the points x and y.

* See [4, p. 166].
Thus by the lemma the set \(G \) is, in case (b), homeomorphic to \(C \setminus \{0\} \).

Remark 2. Theorem 1 may also be proved in another way by using the one-point compactification theorem,\(^7\) but such an exact proof is not simpler than ours.

2. We show in this section that there exist \(2^{N_0} \) topological types of closed subsets of the Cantor set \(C \). Since the power of all closed subsets of \(C \) is \(2^{N_0} \) and every 0-dimensional space has a topological image in the Cantor set \(C \), it suffices to construct a family \(\mathcal{F} \) of power \(2^{N_0} \) of compact, 0-dimensional sets, such that no two sets belonging to this family are homeomorphic. To do this we introduce the notion of a rank \(r_p(B) \) of a point \(p \) relative to the set \(B \). First we recall the notion of the coherence and adherence of a set \(E \) in the sense of Hausdorff.\(^8\)

The 0th coherence of \(E \) is equal to \(E \); the \(\alpha \)th coherence of \(E \) is the set of all limits \(x = \lim_{n \to \infty} x_n \); \(x_i \neq x_j \) for \(i \neq j \) such that \(x \) and \(x_n \) belong to the \((\alpha - 1) \)th coherence, if \(\alpha - 1 \) exists, and the intersection of all coherences with indices \(<\alpha \) if \(\alpha \) is a limit number. The \(\alpha \)th adherence is the difference between the \(\alpha \)th and the \((\alpha + 1) \)th coherences.

Evidently, the \(\alpha \)th adherence is an isolated set. The \(\alpha \)th adherence of the set \(E \) will be denoted by \(E_{(\alpha)} \). It is clear that if \(E \) is a compact and countable set and \(E^{(\beta)} \) is the last derivative\(^9\) \((\neq 0)\) of \(E \), then \(E^{(\beta)} = E_{(\beta)} \) and \(E = \bigcup_{1 \leq \beta} E_{(\beta)} \).

Example 1. Take on the \(x \)-axis the sets of points defined by: \(E_1 = \{ x; x = 1/n, n = 1, 2, \ldots \} \), \(E_2 = \{ x; x = 1/n + 1/m, m, n = 1, 2, \ldots \} \), \(E_3 = E_2 \setminus E_1 \cup \{ 0 \} \). Then, the first coherence of \(E_1 \) is empty and the first derivative of \(E_1 \) consists of the point \(x = 0 \). The first coherence of the set \(E_2 \) consists of the point 0. The second coherence of \(E_3 \) is empty. The first derivative of \(E_2 \) is the set \(E_1 \cup \{ 0 \} \) and the second derivative of \(E_3 \) consists of the point 0.

We define now the rank \(r_p(B) \) of a point \(p \in \overline{B}^{10} \) where \(B \) is a countable set such that \(\overline{B} \) is 0-dimensional.\(^{11}\)
Definition. Let \(p \in B \) where \(B \) is a countable set and \(B \) is 0-dimensional. If \(p \in B \) \((0)\) we define \(r_p(B) = 0 \). If there exists an \(\alpha \) such that \(p = \lim_{n \to \infty} p_n \) where \(p_n \in B \langle \alpha \rangle \) and \(p \) is not a limit point\(^{11} \) of \(B \langle \alpha + 1 \rangle \), we define \(r_p(B) = \alpha + 1 \).

If such an \(\alpha \) does not exist, then there exist an ordinal \(\alpha' \), a sequence \(\{ \alpha_n \} \) of ordinals such that \(\alpha_n \to \alpha' \) and a sequence of points \(p_n \in B \langle \alpha_n \rangle \) such that \(p = \lim_{n \to \infty} p_n \) and \(p \) is not a limit point of \(B \langle \alpha' \rangle \). In this case we define \(r_p(B) = \alpha' \).

Example 2. If \(E_3 \) is the set defined in Example 1, the rank of the point 0 relative to \(E_3 \) is equal to 1.

Let now \(E_1 \) and \(E_2 \) be compact and countable sets, such that the \(\omega \)th derivative \(E_1^\omega \) of \(E_1 \) consists of the point \(p \): \(E_1^\omega = \{ p \} \) and the second derivative \(E_2^2 \) of \(E_2 \) consists of the point \(q \): \(E_2^2 = \{ q \} \). Put \(E_3 = E_1 \times (q) \cup (p) \times E_2 \) and \(B = [(p) \times E_2] \setminus (p, q) \). Then \(r_{(p, q)}(B) = 2 \) and \(r_{(p, q)}(E_3) = \omega \).

To define the family \(\mathcal{F} \) a few additional simple remarks are needed.

Since the order \(\alpha \) of a coherence is an invariant of homeomorphisms, it is easily seen that

(7) the rank \(r_p(B) \) is an invariant of homeomorphisms defined on \(B \).

Take now the Cantor set \(C \) and let \(E \) be a compact and countable subset of \(C \) such that the \(\omega \)th derivative \(E^\omega \) of \(E \) consists of the point \(q \): \(E^\omega = \{ q \} \). Take the \(n \)th adherence \(E_{(n)} \) of \(E \), \(n = 1, 2, \ldots \) and choose from every \(E_{(n)} \) a point \(p_n \).

Since the order of an adherence is invariant under homeomorphisms we have that

(8) if \(h \) is any homeomorphism of \(E \) into itself, then \(h(p_n) \neq p_m \) for \(n \neq m \).

Let now \(D_n \) be the sequence of intervals in the plane defined by \(D_n = \{ (x, y) \mid x = p_n, 0 \leq y \leq 1 \} \) \(n = 1, 2, \ldots \) and let \(\{ \alpha_n \} \) be a sequence of ordinals: \(1 < \alpha_n < \omega \). Choose in every \(D_n \) a countable and compact subset \(F_n \) such that \(\alpha_n \) be the order of the last derivative \(F_n^\omega \) of \(F_n \) and that \(F_n^\omega = \{ p_n \} \). Then the set \(A = C \cup \bigcup_{n=1}^\infty F_n \) is compact (since the diameters of \(D_n \) are equal to \(1/n \) and \(F_n \subset D_n \)) and 0-dimensional. By the definition of \(F_n \) we have also

(9) \(r_{p_n} \left(\bigcup_{n=1}^\infty F_n \setminus E \right) = \alpha_n > 1, \quad n = 1, 2, \ldots \).

Now take in the plane an arbitrary bounded and isolated set \(I \)

\(^{11}\) A point \(x \) such that there exists a sequence \(\{ x_n \} \) of points \(x_n \) belonging to \(E \), \(x_n \neq x_m \) for \(n \neq m \) and such that \(x_n \to x \) is called a limit point of \(E \).

\(^{12}\) \(\times \) denotes the Cartesian product and \((p, q) \) is the point in the Cartesian product.
disjoint with C such that $I^{(1)} = E$. Then the set $A_1 = C \cup \bigcup_{n=1}^{\infty} F_n \cup I$ is 0-dimensional and compact. Denoting the decomposition of A_1 according to the theorem of Cantor-Bendixson by $A_1 = P_1 \cup B_1$ with P_1 as perfect set, we obtain

$$P_1 = C \quad \text{and} \quad B_1 = \left(\bigcup_{n=1}^{\infty} F_n \cup I \right) \setminus E$$

and by the definition of I,

$$P_1 \cap B_1 = E.$$

Since I is isolated there is also, by (9),

$$r_\beta(B_1) = \alpha_n > 1 \quad \text{and for every} \quad p \in E \quad \text{and} \quad p \neq p_n, \quad r_\beta(B_1) = 1.$$

If we take now any other sequence $\{ \beta_n \}$ of ordinals: $1 < \beta_n < \Omega$ and the same set E and points p_n, we can construct, analogically as before, a 0-dimensional and compact set A_2 with the following properties:

If we denote the decomposition of A_2 according to the theorem of Cantor-Bendixson by $A_2 = P_2 \cup B_2$ with P_2 as perfect set, then

$$P_2 = C \quad \text{and} \quad P_2 \cap B_2 = E.$$

Also

$$(10') \quad r_\beta(B_2) = \beta_n > 1 \quad \text{and for every} \quad p \in E \quad \text{and} \quad p \neq p_n, \quad r_\beta(B_2) = 1.$$

Now suppose that there exists a homeomorphism h between A_1 and A_2: $h(A_1) = A_2$. Then we would have $h(P_1 \cap B_1) = P_2 \cap B_2$, i.e., $h(E) = E$. Hence by (8) there would be $h(p_n) \neq p_m$ for $n \neq m$. But, by (7), (10) and (10') there must be $h(p_n) = p_n$ and therefore by (7), $\alpha_n = \beta_n$ for every n. This shows that if the sequences $\{ \alpha_n \}$ and $\{ \beta_n \}$ are different, the sets A_1 and A_2 cannot be homeomorphic. But the power of all sequences $\{ \alpha_n \}$, $1 < \alpha_n < \Omega$ is $\aleph_0 = 2^{\aleph_0}$. Hence Theorem 2 holds.

Remark 3. In [7, p. 119], we introduced a function $\sigma_B(A)$ assigning to every 0-dimensional compact set A an ordinal $< \Omega$. Using this function, it can be easily shown that the power of all topological types of compact uncountable subsets of the Cantor set is \aleph_1. (This can be also obtained from the result of Mazurkiewicz and Sierpinski, mentioned at the beginning of this paper.) Thus by the continuum hypothesis it is equal to 2^{\aleph_0}, but we proved this fact without recourse to this hypothesis.

Note also that the fact that there exist 2^{\aleph_0} topological types of closed sets (not necessarily 0-dimensional) was stated in [6, p. 27].

3. In this section a proof of Theorem 3 is given. Two lemmas are also proved.
Lemma 2. Let C_i and C_2 be two compact 0-dimensional sets and let $S_i \subset C_i$ be two subsets of C_i, $i=1,2$ such that $\text{Cl}(C_i \setminus S_i) = C_i$. Suppose that there exists a homeomorphism $h(C_i \setminus S_i) = C_2 \setminus S_2$ and let $p \in C_i \setminus S_i$ be a limit point of S_i. Then the point $h(p) = q$ is a limit point of S_2.

Proof. Suppose that q is not a limit point of S_2. Since C_2 is 0-dimensional, there exists a closed and open (in C_2) neighbourhood $U \subset C_2$ of q such that $U \cap S_2 = \emptyset$. U being closed in C_2 it is compact; and since h^{-1} is continuous $h^{-1}(U)$ is also a compact subset of $C_1 \setminus S_1$. But $h^{-1}(U) \subset C_1 \setminus S_1$ is also a neighbourhood of p, and since $\text{Cl}(C_1 \setminus S_1) = C_1$ and p is a limit point of S_1, there exists a point $p' \in S_1$ such that $p' \in h^{-1}(U)$, which is impossible.

As a trivial consequence of Lemma 2 we obtain the following:

Lemma 3. Let C_1 and C_2 be two perfect, 0-dimensional sets (containing more than one point) and let $S_i \subset C_i$ be two subsets of C_i such that S_1 is denumerable. Suppose that there exists a homeomorphism $h(C_i \setminus S_i) = C_2 \setminus S_2$ and let $p \in C_i \setminus S_i$ be a limit point of S_i, then the point $h(p) = q$ is a limit point of S_2.

Indeed, since S_1 is denumerable we have $\text{Cl}(C_i \setminus S_i) = C_i$. The other assumptions of Lemma 2 being trivially satisfied it remains to apply this lemma.

Proof of Theorem 3. Since every subset of C which is a G_δ set is defined by a sequence of open sets and the power of all open subsets of C is 2^{\aleph_0}, the power of all G_δ sets does not exceed $(2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}$. Therefore it remains to construct a family of power 2^{\aleph_0} of G_δ sets which are dense in themselves and such that no two sets of this family are homeomorphic. We proceed to do this.

Take a perfect subset P of the set C which is nowhere dense in C. By Theorem 2 there exists a family \mathfrak{F} of power 2^{\aleph_0} of closed subsets of P such that every two sets of \mathfrak{F} are not homeomorphic. Since P is closed and nowhere dense in C the sets of \mathfrak{F} are nowhere dense closed subsets of C. Thus for every set $F \in \mathfrak{F}$ there exists a sequence $S \subset C$ of points such that $F \subset C \setminus S$ and $S = F \cup S$. Now take two sets F_1 and F_2 of \mathfrak{F} and two sequences S_1 and S_2 of points such that $S_i \subset C$, $F_1 \subset C \setminus S_i$ and $S_i = F_i \cup S_i$.

Consider the sets $C \setminus S_i$, $i = 1, 2$. We shall show that these sets are not homeomorphic. Indeed, suppose that there exists a homeomorphism $h(C \setminus S_i) = C \setminus S_2$. Since S_i is denumerable and C is perfect the assumptions of Lemma 3 hold for $C_i = C_2 = C$. Thus, by $F_i \subset C \setminus S_i$ and $S_i = F_i \cup S_i$ every point p of F_1 has an image $h(p)$ in F_2 and conversely

\footnote{Evidently P is homeomorphic to C.}
for every \(q \in F_2 \) there is \(h^{-1}(q) \in F_1 \). Hence by \(h(C \setminus S_i) = C \setminus S_2 \) there is \(h(F_i) = F_2 \) which is impossible by \(F_i \in \mathcal{F}, i = 1, 2 \).

Thus we can correspond to every set \(F \in \mathcal{F} \) a set \(C \setminus S \), where \(S \) is denumerable, in such a way that the sets \(C \setminus S_1 \) and \(C \setminus S_2 \) corresponding to different sets \(F_1 \) and \(F_2 \) of \(\mathcal{F} \), are not homeomorphic. Since the power of \(\mathcal{F} \) is \(2^{\aleph_0} \), the power of the family of corresponding sets of the form \(C \setminus S \) is also \(2^{\aleph_0} \). Since \(S \) is denumerable the sets \(C \setminus S \) are \(G_\delta \) sets and since \(C \) is perfect they are also dense in themselves. Hence Theorem 3 holds.

References