FIXED POINT THEOREMS FOR PSEUDO MONOTONE MAPPINGS

L. E. WARD, JR.

1. Introduction. Recently [7] the author generalized a well-known theorem of Hamilton [1] in the following manner: if X is a continuum each of whose subcontinua is unicoherent and decomposable, then X has the fixed point property for monotone transformations. As a corollary it followed that the same fixed point property obtains for continua each of whose nondegenerate subcontinua has a cutpoint. The argument depended on the order structure of a certain arcwise connected hyperspace of the continuum.

In this note we arrive at the same corollary by a distinctly different and simpler proof. Au fond the argument is essentially the same as one due to Kelley [2] where it was shown that a homeomorphism of a continuum into itself has an invariant, cutpoint-free subcontinuum. (The analogous result for monotone transformations was proved by the author in [6].) The proof of Kelley does not make full use of the properties of homeomorphisms; the essential properties which make his argument work define a class of transformations which we shall term the pseudo monotone mappings.

Finally, we note that our results for pseudo monotone mappings admit a further generalization in the setting of partially ordered topological spaces.

2. Pseudo monotone mappings. Let X and Y be spaces and $f: X \to Y$ a continuous mapping. We say that f is pseudo monotone if, whenever A and B are closed and connected subsets of X and Y, respectively, and $B \subseteq f(A)$, it follows that some component of $A \cap f^{-1}(B)$ is mapped by f onto B. In general this notion is independent of that of a monotone mapping, but in certain applications of interest every monotone mapping is pseudo monotone.

Recall that a continuum (= compact connected Hausdorff space) is hereditarily unicoherent if any two of its subcontinua meet in a connected set.

Lemma 1. If X is an hereditarily unicoherent continuum and $f: X \to Y$ is a monotone mapping, then f is pseudo monotone.

Presented to the Society, April 22, 1961; received by the editors December 28, 1960.

1 This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)-889. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Proof. Let \(A \) and \(B \) be closed and connected subsets of \(X \) and \(Y \), respectively, such that \(B \subseteq f(A) \). Since \(f \) is monotone, \(f^{-1}(B) \) is a continuum, and since \(X \) is hereditarily unicoherent, \(A \cap f^{-1}(B) \) is connected. Hence \(f \) is pseudo monotone.

Suppose now that \(X \) is a continuum and that \(f: X \to X \) is continuous. A simple maximality argument establishes the existence of a nonempty subcontinuum \(Y \), which is minimal with respect to being invariant under \(f \). Suppose \(Y \) has a cutpoint \(p \), with

\[
Y - p = A \cup B
\]

where \(A \) and \(B \) are disjoint, separated and nonempty. If \(f(p) = p \) then the minimality of \(Y \) is contradicted, so we may assume \(f(p) \in A \) and define \(r(Y) = \overline{A} \) by

\[
r(x) = \begin{cases}
 x, & x \in \overline{A}, \\
 p, & x \in \overline{B}.
\end{cases}
\]

The mapping \(g: \overline{A} \to \overline{A} \) defined by \(g = rf \) is continuous, and the set

\[
K = \bigcap_{n=1}^{\infty} \{ g^n(\overline{A}) \}
\]

is a subcontinuum of \(\overline{A} \) which is invariant under \(g \). Thus

\[
f(K) \cap K = rf(K) = g(K) = K
\]

and we infer \(K \subseteq f(K) \). Therefore, if \(f \) is pseudo monotone, the set \(K \cap f^{-1}(K) \) has a component \(K_1 \) such that \(f(K_1) = K \). Inductively we obtain a sequence of subcontinua, \(K_n \), such that

\[
K_n \subset f(K_n) = K_{n-1} \subset \cdots \subset f(K_1) = K.
\]

Clearly, the intersection of this sequence is a nonempty subcontinuum invariant under \(f \), and this contradicts the minimality of \(Y \). We have proved

Theorem 1. If \(X \) is a continuum and \(f: X \to X \) is a pseudo monotone mapping, then \(X \) contains a nonempty subcontinuum \(Y \) which is minimal with respect to being invariant under \(f \). Moreover, \(Y \) has no cutpoints.

Corollary 1.1. If \(X \) is a continuum such that each of its nondegenerate subcontinua has a cutpoint, and if \(f: X \to X \) is a pseudo monotone mapping, then there exists \(x_0 \in X \) such that \(x_0 = f(x_0) \).

It has been proved elsewhere [7] that the continua of Corollary 1.1 are hereditarily unicoherent. Therefore, by Lemma 1, we have
Corollary 1.2. If X is a continuum such that each of its nondegenerate subcontinua has a cutpoint, and if $f: X \rightarrow X$ is a monotone mapping, then there exists $x_0 \in X$ such that $x_0 = f(x_0)$.

3. A generalization. In [5] the author defined a POTS (= partially ordered topological space) to be a partially ordered set X, so topologized that the sets

$$L(x) = \{a: a \leq x\}, \quad M(x) = \{a: x \leq a\}$$

are closed, for each $x \in X$. Two elements x and y of X are comparable if $x \leq y$ or $y \leq x$. In the event X contains a unit, i.e., a unique element e such that $L(e) = X$, we say that the subset A of X is bounded away from e if there exists $y \neq e$ such that $A \subseteq L(y)$.

The following theorem was proved in [5].

Fixed Point Theorem. Let X be a compact Hausdorff POTS with unit, e. Let $f: X \rightarrow X$ be a continuous, order-preserving mapping satisfying the following conditions.

(i) There exists $x \neq e$ such that x and $f(x)$ are comparable.

(ii) If $x \neq e$ and if x and $f(x)$ are comparable, then either the sequence $f^n(x), n = 1, 2, \ldots$, is bounded away from e, or $f^{-1}(x) \cap L(x)$ is nonempty.

Then there exists $x_0 \neq e$ such that $x_0 = f(x_0)$.

For the remainder of this paper let us assume that X is a compact Hausdorff POTS with unit e, which is endowed with the following two properties.

(a) There exist elements a, b and p of X such that $L(a) \cap L(b) = p$.

(b) If $x \in X - L(a) \cup L(b)$ then $p \leq x$ and each of the sets $L(x) \cap L(a)$ and $L(x) \cap L(b)$ has a supremum.

Let $f: X \rightarrow X$ be continuous and order-preserving, and suppose f maps minimal elements into minimal elements. In addition, suppose f satisfies the following order-theoretic analogue of pseudo monotonicity.

(P) If $x \leq f(x)$ then $f^{-1}(x) \cap L(x)$ is nonempty.

According to the fixed point theorem above, f has a fixed point distinct from e if $f(x) \leq x$ for some $x \neq e$. If this does not occur, then by (b) and the fact that $f(p)$ is minimal, we have $f(p) \leq a$ or $f(p) \leq b$, but not both. Suppose $f(p) \leq a$; since f is order-preserving, $f(a)$ cannot lie in $L(b)$. Moreover, $f(a)$ cannot lie in $L(a)$ by assumption, so that by (b) there must exist

$$t_1 = \sup \{L(f(a)) \cap L(a)\},$$
with $p \leq t_1$. Now $f(t_1) \in X - L(a)$ and, since $p \leq t_1$, it follows that $f(p) \leq f(t_1)$ and hence $f(t_1) \in X - L(b)$. Applying (β) again there exists
\[t_2 = \sup(L(f(t_1)) \cap L(a)) \]
with $p \leq t_2$. Because f is order-preserving it follows that $f(t_1) \leq f(a)$ and hence $t_2 \leq f(a)$. Moreover, $t_2 \leq a$ so that $t_2 \leq t_1$. Inductively, we obtain a sequence t_n satisfying
\[t_{n+1} = \sup(L(f(t_n)) \cap L(a)), p \leq t_{n+1} \leq t_n. \]
Since t_n is a decreasing sequence, it must converge to some $t_0 \leq t_n$. Further, since $t_n \leq f(t_{n-1})$, it follows that $t_0 \leq f(t_0)$. Condition (i) is now satisfied and (ii) follows from (P) and the above discussion. Hence we infer (compare with a result of A. D. Wallace [4])

Theorem 2. Let X be a nondegenerate compact Hausdorff POTS with unit e, satisfying (α) and (β). Let $f: X \rightarrow X$ be a continuous, order-preserving mapping which maps minimal elements into minimal elements and satisfies (P). Then there exists $x_0 \in X - e$ such that $f(x_0) = x_0$.

It is not difficult to see that Theorem 2 is truly a generalization of Theorem 1. Let Y be a continuum with a cutpoint p, and let $f(Y) = Y$ be pseudo monotone. If X is the space of subcontinua of Y, endowed with the finite topology [3], and if f^* is the mapping of X into itself induced by f, then X and f^* satisfy the hypotheses of Theorem 2, where the partial order is taken to be inclusion. Thus Y contains an invariant proper subcontinuum and Theorem 1 follows.

References

University of Oregon