1. Notations and terminology. Our terminology conforms with that of [2]. The inner product of vectors x and y in a Hilbert space \mathcal{K} is denoted (x, y). An operator in \mathcal{K} is a continuous linear mapping $T: \mathcal{K} \to \mathcal{K}$. The $*$-algebra of all operators in \mathcal{K} is denoted $L(\mathcal{K})$. A complex number μ is a proper value for T if there exists a nonzero vector x such that $(T-\mu I)x = 0$; such a vector x is a proper vector for T. A complex number μ is an approximate proper value for T in case there exists a sequence of vectors x_n such that $\|x_n\| = 1$ and $\|T x_n - \mu x_n\| \to 0$; equivalently, there does not exist a number $\epsilon > 0$ such that $(T - \mu I)^* (T - \mu I) \geq \epsilon I$.

The spectrum of an operator T, denoted $s(T)$, is the set of all complex numbers μ such that $T - \mu I$ has no inverse. The approximate point spectrum of T, denoted $a(T)$, is the set of all approximate proper values of T. The point spectrum of T, denoted $\rho(T)$, is the set of all proper values of T. Evidently $\rho(T) \subseteq a(T) \subseteq s(T)$. If T is normal, $s(T) = a(T)$ (see [2, Theorem 31.2]); if T is Hermitian, $a(T)$ contains a (necessarily real) number α such that $|\alpha| = \|T\|$ (see [2, Theorem 34.2]), and in particular one has an elementary proof of the fact that the spectrum of T is nonempty.

2. Introduction. The spectrum of a Hermitian operator is shown to be nonempty by completely elementary means. It would be nice to have an elementary proof for normal operators (see [2, p. 111]).

The purpose of this note is to give a proof based on Banach limits. Incidentally, \mathcal{K} will be extended to a curious Hilbert space $\hat{\mathcal{K}}$, in which it becomes natural to speak of “approximate proper vectors.”

Our motivation for the construction of $\hat{\mathcal{K}}$ was as follows. Suppose T is a normal operator, and μ and ν are distinct approximate proper values of T. Choose sequences of unit vectors $\{x_n\}$ and $\{y_n\}$ such that $\|T x_n - \mu x_n\| \to 0$ and $\|T y_n - \nu y_n\| \to 0$. Then,

$$\lim \frac{(\mu - \nu)(x_n, y_n)}{\mu x_n - T x_n, y_n} + (x_n, T^* y_n - \nu y_n) \leq \|\mu x_n - T x_n\| + \|T^* y_n - \nu y_n\| = \|\mu x_n - T x_n\| + \|T y_n - \nu y_n\| \to 0.$$

Thus, $(x_n, y_n) \to 0$, and we have a generalization of the following well-
known fact: for a normal operator, proper vectors belonging to distinct proper values are orthogonal. This suggests thinking of the sequences \(\{x_n\} \) and \(\{y_n\} \) as being “approximate proper vectors,” with their inner product defined to be \(\lim(x_n, y_n) \).

In what follows, we denote by \(\text{glim} \) a fixed “Banach generalized limit,” defined for bounded sequences \(\{\lambda_n\} \) of complex numbers (see page 34 of [1]); thus,

\[
\begin{align*}
(1) \quad \text{glim}(\lambda_n + \mu_n) &= \text{glim} \lambda_n + \text{glim} \mu_n, \\
(2) \quad \text{glim}(\lambda \lambda_n) &= \lambda \text{glim} \lambda_n, \\
(3) \quad \text{glim} \lambda_n &= \lim \lambda_n \text{ whenever } \{\lambda_n\} \text{ is convergent,} \\
(4) \quad \text{glim} \lambda_n &\geq 0 \text{ when } \lambda_n \geq 0 \text{ for all } n.
\end{align*}
\]

We shall not make use of a “translation-invariant” property of \(\text{glim} \); all we need are properties (1)–(4), in other words, a positive linear form on the vector space \(m \) of bounded sequences, which vanishes on the space \(c_0 \) of null sequences, and has the value 1 for the constant sequence \(\{1\} \). It follows from (1) and (4) that \(\text{glim} \lambda_n \) is real whenever \(\lambda_n \) is real for all \(n \); this implies in turn that \(\text{glim}(\lambda_n^*) = (\text{glim} \lambda_n)^* \) for any bounded sequence \(\{\lambda_n\} \).

3. An extension \(\mathcal{K} \) of \(\mathcal{K} \). Denote by \(\mathcal{B} \) the set of all sequences \(s = \{x_n\} \), with \(x_n \) in \(\mathcal{K} \) \((n = 1, 2, 3, \ldots) \), such that \(\|x_n\| \) is bounded [that is, \(\{\|x_n\|\} \) is in \(m \)]. If \(s = \{x_n\} \) and \(t = \{y_n\} \), write \(s = t \) in case \(x_n = y_n \) for all \(n \). The set \(\mathcal{B} \) is a vector space relative to the definitions \(s + t = \{x_n + y_n\} \) and \(s\cdot t = \{s_n\cdot t_n\} \).

Suppose \(s = \{x_n\} \) and \(t = \{y_n\} \) belong to \(\mathcal{B} \); since \(\|(x_n, y_n)\| \leq \|x_n\| \|y_n\| \), it is permissible to define

\[
\phi(s, t) = \text{glim}(x_n, y_n).
\]

Evidently \(\phi \) is a positive symmetric bilinear functional on \(\mathcal{B} \) (see [2, §2]), hence \(|\phi(s, t)|^2 \leq \phi(s, s)\phi(t, t) \) (see [2, §5]). Let \(\mathcal{N} = \{s: \phi(s, s) = 0\} = \{s: \phi(s, t) = 0 \text{ for all } t \text{ in } \mathcal{B}\} \). Clearly \(\mathcal{N} \) is a linear subspace of \(\mathcal{B} \); we write \(s' \) for the coset \(s + \mathcal{N} \). The quotient vector space \(\mathcal{P} = \mathcal{B}/\mathcal{N} \) becomes an inner product space on defining \((s', t') = \phi(s, t) \). Thus, if \(u = \{x_n\}' \) and \(v = \{y_n\}' \),

\[
(u, v) = \text{glim}(x_n, y_n).
\]

If \(x \) is in \(\mathcal{K} \), we write \(\{x\} \) for the sequence all of whose terms are \(x \), and \(x' \) for the coset \(\{x\}' + \mathcal{N} \). Evidently \((x', y') = (x, y) \), and \(x \rightarrow x' \) is an isometric linear mapping of \(\mathcal{K} \) onto a closed linear subspace \(\mathcal{K}' \) of \(\mathcal{P} \). Regard \(\mathcal{P} \) as a linear subspace of its Hilbert space completion
4. A representation of $L(\mathcal{H})$. Every operator T in \mathcal{H} determines an operator T^0 in \mathcal{K}, as follows.

If $s = \{x_n\}$ is in \mathcal{B}, then the relation $\|Tx_n\|^2 \leq \|T\|^2 \|x_n\|^2$ shows that $\{Tx_n\}$ is in \mathcal{B}. Defining $T_0s = \{Tx_n\}$, we have a linear mapping $T_0: \mathcal{B} \to \mathcal{B}$ such that $\phi(T_0s, T_0s) \leq \|T\|^2 \phi(s, s)$. In particular, if s is in \mathcal{K}, that is if $\phi(s, s) = 0$, then T_0s is also in \mathcal{K}. It follows that $\{x_n\}' \to \{Tx_n\}'$ is a well-defined linear mapping of \mathcal{B} into \mathcal{B}, which we denote T^0; thus, $T^0s' = (T_0s)'$, and the inequality $(T^0u, T^0w) \leq \|T\|^2(u, u)$, valid for all u in \mathcal{B}, shows that T^0 is continuous, with $\|T^0\| \leq \|T\|$. Since in particular $T^0x' = (Tx)'$ for all x in \mathcal{H}, it is clear that $\|T^0\| = \|T\|$, thus $\|T^0\| = \|T\|$. The continuous linear mapping T^0 extends to a unique operator in \mathcal{K}, which we also denote T^0.

The mapping $T \to T^0$ of $L(\mathcal{H})$ into $L(\mathcal{K})$ is easily seen to be a faithful *-representation: $(S + T)^0 = S^0 + T^0$, $(\lambda T)^0 = \lambda T^0$, $(ST)^0 = S^0T^0$, $(T^*)^0 = (T^0)^*$, $I^0 = I$, and $\|T^0\| = \|T\|$.

Suppose $T \geq 0$, that is, $(Tx, x) \geq 0$ for all x in \mathcal{K}. If $u = \{x_n\}'$ is in \mathcal{B}, then $(Tx_n, x_n) \geq 0$ for all n, hence $(T^0u, u) = \text{glim}(Tx_n, x_n) \geq 0$; it follows that $(T^0v, v) \geq 0$ for all v in \mathcal{K}. Clearly, for an operator T in \mathcal{K}, one has $T \geq 0$ if and only if $T^0 \geq 0$.

Lemma. If T is any operator in \mathcal{K}, $a(T^0) = a(T)$.

Proof. A complex number μ fails to belong to $a(T)$ if and only if there exists a number $\epsilon > 0$ such that $(T - \mu I)^* (T - \mu I) \geq \epsilon I$. By the above remarks, this condition is equivalent to $(T^0 - \mu I)^* (T^0 - \mu I) \geq \epsilon I$.

Theorem 1. For every operator T in \mathcal{K},

$$a(T) = a(T^0) = \rho(T^0).$$

Proof. The relations $a(T) = a(T^0) \supset \rho(T^0)$ have already been noted. Suppose μ is in $a(T)$. Choose a sequence x_n in \mathcal{K} such that $\|x_n\| = 1$ and $\|Tx_n - \mu x_n\| \to 0$, and set $u = \{x_n\}'$. Clearly $\|u\| = 1$ and $\|T^0u - \mu u\|^2 = \text{glim} \|Tx_n - \mu x_n\|^2 = 0$, hence $T^0u = \mu u$; that is, μ is in $\rho(T^0)$.

Theorem 2. If T is any normal operator in \mathcal{K}, T has an approximate proper value μ such that $|\mu| = \|T\|$.

Proof. Without loss of generality, we may suppose $\|T\| = 1$. If 1 is in $s(T)$, the relation $s(T) = a(T)$ ends the proof. Let us assume henceforth that $I - T$ is invertible.
Let $S = T^*T$. Since $\|S\| = 1$, and since $S \succeq 0$, it follows from the remarks in \S 1 that 1 is an approximate proper value for S. By Theorem 1, 1 is a proper value for S^0. Let \mathcal{M} be the null space of $S^0 - I$, thus $\mathcal{M} = \{v : S^0v = v \neq 0\}$. Since $TS = ST$ and $T^*S = ST^*$, \mathcal{M} is invariant under T^0 and $(T^0)^*$; thus, \mathcal{M} reduces T^0. We denote by T^0/\mathcal{M} the restriction of T^0 to \mathcal{M}. Since $S^0/\mathcal{M} = I$, we have $(T^0/\mathcal{M})^*(T^0/\mathcal{M}) = (T^0S^0/\mathcal{M})(T^0/\mathcal{M}) = (T^0*T^0)/\mathcal{M} = S^0/\mathcal{M} = I$; clearly T^0/\mathcal{M} is a unitary operator in \mathcal{M}. Write $U = T^0/\mathcal{M}$. Since $I - T$ has an inverse in $L(\mathcal{M})$, $I - T^0$ has an inverse in $L(\mathcal{M})$; since \mathcal{M} reduces $I - T^0$, it follows that $I - U$ has an inverse in $L(\mathcal{M})$. Let R be the Cayley transform of U, that is, $R = i(I + U)(I - U)^{-1}$; R is a Hermitian operator in \mathcal{M}. Define $A = i(I + T)(I - T)^{-1}$; clearly $A^0/\mathcal{M} = R$.

Let α be any approximate proper value for R (see \S 1). It is clear from the definition that α is also an approximate proper value for A^0. By Theorem 1, there is a nonzero vector u in \mathcal{M} such that $A^0u = \alpha u$. Since $A^0 = i(I + T^0)(I - T^0)^{-1}$, an elementary calculation gives $T^0u = (\alpha - i)(\alpha + i)^{-1}u$. Thus, $\mu = (\alpha - i)(\alpha + i)^{-1}$ belongs to $\rho(T^0) = \sigma(T^0) = a(T)$, and $|\mu| = 1 = \|T\|$.

References

State University of Iowa