1. Notations and terminology. Our terminology conforms with that of [2]. The inner product of vectors x and y in a Hilbert space \mathcal{H} is denoted (x, y). An operator in \mathcal{H} is a continuous linear mapping $T: \mathcal{H} \to \mathcal{H}$. The *-algebra of all operators in \mathcal{H} is denoted $L(\mathcal{H})$. A complex number μ is a proper value for T if there exists a nonzero vector x such that $(T - \mu I)x = 0$; such a vector x is a proper vector for T. A complex number μ is an approximate proper value for T in case there exists a sequence of vectors x^n such that $\|x^n\| = 1$ and $\|Tx^n - \mu x^n\| \to 0$; equivalently, there does not exist a number $\epsilon > 0$ such that $(T - \mu I)^*(T - \mu I) \geq \epsilon I$.

The spectrum of an operator T, denoted $\sigma(T)$, is the set of all complex numbers μ such that $T - \mu I$ has no inverse. The approximate point spectrum of T, denoted $\sigma_a(T)$, is the set of all approximate proper values of T. The point spectrum of T, denoted $\sigma_p(T)$, is the set of all proper values of T. Evidently $\sigma_p(T) \subset \sigma_a(T) \subset s(T)$. If T is normal, $s(T) = \sigma_a(T)$ (see [2, Theorem 31.2]); if T is Hermitian, $\sigma_a(T)$ contains a (necessarily real) number α such that $|\alpha| = \|T\|$ (see [2, Theorem 34.2]), and in particular one has an elementary proof of the fact that the spectrum of T is nonempty.

2. Introduction. The spectrum of a Hermitian operator is shown to be nonempty by completely elementary means. It would be nice to have an elementary proof for normal operators (see [2, p. 111]). The purpose of this note is to give a proof based on Banach limits. Incidentally, \mathcal{H} will be extended to a curious Hilbert space \mathcal{X}, in which it becomes natural to speak of “approximate proper vectors.”

Our motivation for the construction of \mathcal{X} was as follows. Suppose T is a normal operator, and μ and ν are distinct approximate proper values of T. Choose sequences of unit vectors $\{x_n\}$ and $\{y_n\}$ such that $\|Tx_n - \mu x_n\| \to 0$ and $\|Ty_n - \nu y_n\| \to 0$. Then,

$$\|(\mu - \nu)(x_n, y_n)\| = \|(\mu x_n - Tx_n, y_n) + (x_n, T^*y_n - \nu^*y_n)\| \leq \|\mu x_n - Tx_n\| + \|T^*y_n - \nu^*y_n\| = \|\mu x_n - Tx_n\| + \|Ty_n - \nu y_n\| \to 0.$$

Thus, $(x_n, y_n) \to 0$, and we have a generalization of the following well-
known fact: for a normal operator, proper vectors belonging to distinct proper values are orthogonal. This suggests thinking of the sequences \(\{x_n\} \) and \(\{y_n\} \) as being "approximate proper vectors," with their inner product defined to be \(\lim(x_n, y_n) \).

In what follows, we denote by \(\text{glim} \) a fixed "Banach generalized limit," defined for bounded sequences \(\{\lambda_n\} \) of complex numbers (see page 34 of [1]); thus,

(1) \(\text{glim}(\lambda_n + \mu_n) = \text{glim} \lambda_n + \text{glim} \mu_n \),
(2) \(\text{glim}(\lambda \lambda_n) = \lambda \text{glim} \lambda_n \),
(3) \(\text{glim} \lambda_n = \lim \lambda_n \) whenever \(\{\lambda_n\} \) is convergent,
(4) \(\text{glim} \lambda_n \geq 0 \) when \(\lambda_n \geq 0 \) for all \(n \).

We shall not make use of a "translation-invariant" property of \(\text{glim} \); all we need are properties (1)-(4), in other words, a positive linear form on the vector space \(\mathbb{m} \) of bounded sequences, which vanishes on the space \(\mathcal{c}_0 \) of null sequences, and has the value 1 for the constant sequence \(\{1\} \). It follows from (1) and (4) that \(\text{glim} \lambda_n \) is real whenever \(\lambda_n \) is real for all \(n \); this implies in turn that \(\text{glim}(\lambda_n^*) = (\text{glim} \lambda_n)^* \) for any bounded sequence \(\{\lambda_n\} \).

3. An extension \(\mathcal{K} \) of \(\mathcal{K} \). Denote by \(\mathcal{B} \) the set of all sequences \(s = \{x_n\} \), with \(x_n \) in \(\mathcal{K} \) (\(n = 1, 2, 3, \ldots \)), such that \(\|x_n\| \) is bounded (that is, \(\{\|x_n\|\} \) is in \(\mathcal{m} \)). If \(s = \{x_n\} \) and \(t = \{y_n\} \), write \(s = t \) in case \(x_n = y_n \) for all \(n \). The set \(\mathcal{B} \) is a vector space relative to the definitions \(s + t = \{x_n + y_n\} \) and \(\lambda s = \{\lambda x_n\} \).

Suppose \(s = \{x_n\} \) and \(t = \{y_n\} \) belong to \(\mathcal{B} \); since \(|(x_n, y_n)| \leq \|x_n\| \|y_n\| \), it is permissible to define

\[\phi(s, t) = \text{glim}(x_n, y_n). \]

Evidently \(\phi \) is a positive symmetric bilinear functional on \(\mathcal{B} \) (see [2, §2]), hence \(|\phi(s, t)| \leq \phi(s, s)\phi(t, t) \) (see [2, §5]). Let \(\mathcal{N} = \{s: \phi(s, s) = 0\} = \{s: \phi(s, t) = 0 \text{ for all } t \in \mathcal{B}\} \). Clearly \(\mathcal{N} \) is a linear subspace of \(\mathcal{B} \); we write \(s' \) for the coset \(s + \mathcal{N} \). The quotient vector space \(\mathcal{Q} = \mathcal{B}/\mathcal{N} \) becomes an inner product space on defining \((s', t') = \phi(s, t) \). Thus, if \(u = \{x_n\}' \) and \(v = \{y_n\}' \),

\[(u, v) = \text{glim}(x_n, y_n). \]

If \(x \) is in \(\mathcal{K} \), we write \(\{x\} \) for the sequence all of whose terms are \(x \), and \(x' \) for the coset \(\{x\} + \mathcal{N} \). Evidently \((x', y') = (x, y) \), and \(x \rightarrow x' \) is an isometric linear mapping of \(\mathcal{K} \) onto a closed linear subspace \(\mathcal{K}' \) of \(\mathcal{Q} \). Regard \(\mathcal{Q} \) as a linear subspace of its Hilbert space completion.
Thus, \(\mathcal{K} \subseteq \mathcal{L} \subseteq \mathcal{K} \), where \(\mathcal{K} \) is a closed linear subspace of \(\mathcal{K} \), and \(\mathcal{L} \) is a dense linear subspace of \(\mathcal{K} \).

4. A representation of \(L(\mathcal{K}) \). Every operator \(T \) in \(\mathcal{K} \) determines an operator \(T^0 \) in \(\mathcal{K} \), as follows.

If \(s = \{ x_n \} \) is in \(\mathcal{B} \), then the relation \(\| Tx_n \| \leq \| T \| \| x_n \| \) shows that \(\{ Tx_n \} \) is in \(\mathcal{B} \). Defining \(T_\mathcal{B} = \{ Tx_n \} \), we have a linear mapping \(T_\mathcal{B} : \mathcal{B} \rightarrow \mathcal{B} \) such that \(\phi (T_\mathcal{B} s, T_\mathcal{B} s) \leq \| T \|^2 \phi (s, s) \). In particular if \(s \) is in \(\mathcal{K} \), that is if \(\phi (s, s) = 0 \), then \(T_\mathcal{B} s \) is also in \(\mathcal{K} \). It follows that \(\{ x_n \}' \rightarrow \{ Tx_n \}' \) is a well-defined linear mapping of \(\mathcal{L} \) into \(\mathcal{L} \), which we denote \(T^0 \); thus, \(T^0 s' = (T_\mathcal{B} s)' \), and the inequality \((T^0 u, T^0 w) \leq \| T \|^2 (u, w) \), valid for all \(u \) in \(\mathcal{L} \), shows that \(T^0 \) is continuous, with \(\| T^0 \| \leq \| T \| \).

Since in particular \(T^0 x' = (Tx)' \) for all \(x \) in \(\mathcal{K} \), it is clear that \(\| T^0 \| \geq \| T \| \), thus \(\| T^0 \| = \| T \| \). The continuous linear mapping \(T^0 \) extends to a unique operator in \(\mathcal{K} \), which we also denote \(T^0 \).

The mapping \(T \rightarrow T^0 \) of \(L(\mathcal{K}) \) into \(L(\mathcal{K}) \) is easily seen to be a faithful \(\ast \)-representation: \((S + T)^0 = S^0 + T^0 \), \((\lambda T)^0 = \lambda T^0 \), \((ST)^0 = S^0 T^0 \), \((T^*)^0 = (T^0)^* \), \(I^0 = I \), and \(\| T^0 \| = \| T \| \).

Suppose \(T \geq 0 \), that is, \((Tx, x) \geq 0 \) for all \(x \) in \(\mathcal{K} \). If \(u = \{ x_n \}' \) is in \(\mathcal{L} \), then \((Tx_n, x_n) \geq 0 \) for all \(n \), hence \((T^0 u, u) = \text{glim} \| Tx_n, x_n \| \geq 0 \); it follows that \(T^0 v, v \geq 0 \) for all \(v \) in \(\mathcal{K} \). Clearly: for an operator \(T \) in \(\mathcal{K} \), one has \(T \geq 0 \) if and only if \(T^0 \geq 0 \).

Lemma. If \(T \) is any operator in \(\mathcal{K} \), \(a(T^0) = a(T) \).

Proof. A complex number \(\mu \) fails to belong to \(a(T) \) if and only if there exists a number \(\epsilon > 0 \) such that \((T - \mu I)^* (T - \mu I) \geq \epsilon I \). By the above remarks, this condition is equivalent to \((T^0 - \mu I)^* (T^0 - \mu I) \geq \epsilon I \).

Theorem 1. For every operator \(T \) in \(\mathcal{K} \),

\[
a(T) = a(T^0) = \rho(T^0).
\]

Proof. The relations \(a(T) = a(T^0) \supseteq \rho(T^0) \) have already been noted. Suppose \(\mu \) is in \(a(T) \). Choose a sequence \(x_n \) in \(\mathcal{K} \) such that \(\| x_n \| = 1 \) and \(\| Tx_n - \mu x_n \| \rightarrow 0 \), and set \(u = \{ x_n \}' \). Clearly \(\| u \| = 1 \) and \(\| T^0 u - \mu u \| \leq \text{glim} \| Tx_n - \mu x_n \|^2 = 0 \), hence \(T^0 u = \mu u \); that is, \(\mu \) is in \(\rho(T^0) \).

Theorem 2. If \(T \) is any normal operator in \(\mathcal{K} \), \(T \) has an approximate proper value \(\mu \) such that \(| \mu | = \| T \| \).

Proof. Without loss of generality, we may suppose \(\| T \| = 1 \). If \(1 \) is in \(s(T) \), the relation \(s(T) = a(T) \) ends the proof. Let us assume henceforth that \(I - T \) is invertible.
Let $S = T^*T$. Since $\|S\| = 1$, and since $S \geq 0$, it follows from the remarks in §1 that 1 is an approximate proper value for S. By Theorem 1, 1 is a proper value for S^o. Let \mathcal{M} be the null space of $S^o - I$, thus $\mathcal{M} = \{v : S^ov = v \neq 0\}$. Since $TS = ST$ and $T^*S = ST^*$, \mathcal{M} is invariant under T^o and $(T^o)^*$. Thus, \mathcal{M} reduces T^o. We denote by T^o/\mathcal{M} the restriction of T^o to \mathcal{M}. Since $S^o/\mathcal{M} = I$, we have $(T^o/\mathcal{M})*(T^o/\mathcal{M}) = (T^o/s/\mathcal{M})(T^o/\mathcal{M}) = (T^o*T^o)/\mathcal{M} = S^o/\mathcal{M} = I$; clearly T^o/\mathcal{M} is a unitary operator in \mathcal{M}. Write $U = T^o/\mathcal{M}$. Since $I - T$ has an inverse in $L(\mathcal{H})$, $I - T^o$ has an inverse in $L(\mathcal{H})$; since \mathcal{M} reduces $I - T^o$, it follows that $I - U$ has an inverse in $L(\mathcal{M})$. Let R be the Cayley transform of U, that is, $R = i(I + U)(I - U)^{-1}$; R is a Hermitian operator in \mathcal{M}. Define $A = i(I + T)(I - T)^{-1}$; clearly $A^o/\mathcal{M} = R$.

Let α be any approximate proper value for R (see §1). It is clear from the definition that α is also an approximate proper value for A^o. By Theorem 1, there is a nonzero vector u in \mathcal{M} such that $A^o u = \alpha u$. Since $A^o = i(I + T^o)(I - T^o)^{-1}$, an elementary calculation gives $T^o u = (\alpha - i)(\alpha + i)^{-1} u$. Thus, $\mu = (\alpha - i)(\alpha + i)^{-1}$ belongs to $\rho(T^o) = \alpha(T^o) = A(T^o)$, and $|\mu| = 1 = \|T\|$.

References

State University of Iowa