A PROPERTY OF HOMOGENEOUS PROCESSES

JOHN W. WOLL, JR. 1

1. Statement of results. In the following G is a locally compact Hausdorff group, K a compact subgroup, $X = G/K$ the homogeneous space of left cosets, and $C(X)$ the Banach space of continuous complex valued functions on X which are constant at infinity. $(P_t)_{t \geq 0}$ denotes a homogeneous process on X. That is, $P_t: C(X) \to C(X)$ is a strongly continuous one parameter semi-group of positive, constant-preserving linear transformations of $C(X)$ which commute with left translation by elements of G. Stated in other words, $(P_t)_{t \geq 0}$ is a strongly continuous one parameter semi-group on $C(X)$; $f \geq 0$ implies $P_tf \geq 0$; $P_t1 = 1$ and $L_gP_t = P_tL_g$ where $L_gf(x) = f(g^{-1}[x])$, $f \in C(X)$, $g \in G$, $x \in X$.

P_t is represented by a kernel $P_t(x, A)$,

$$P_t f(x) = \int P_t(x, ds)f(s),$$

which is the transition probability of a stationary Markov process on X. For the kernel, homogeneity means $P_t(x, A) = P_t(g[x], g[A])$ when $x \in X$, $g \in G$ and A is a Borel subset of X. It is shown below that

Theorem. Every homogeneous process possesses Property II.

Property II. For each $z \in X$ there is a regular Borel measure Q_z on $X - \{z\}$ such that

$$t^{-1}P_t f(z) \to Q_z(f) \text{ as } t \to 0,$$

for each $f \in C(X)$ which vanishes on a neighborhood of z. Q_z is not necessarily bounded but it is bounded on the complement of any neighborhood of z.

The stochastic and analytic implications of Property II are discussed in [1]. Roughly speaking, Q_z describes very precisely the nature of the discontinuities in the paths of any process with transition probabilities $P_t(x, A)$, while from the analytic point of view Q_z is related to the form of the infinitesimal generator of P_t, and Property II implies, for example, that the domain of this infinitesimal generator admits very satisfying smoothing operations.

2. Reduction and reformulation. By way of preliminary computations, let H be a compact subgroup of G and dh the normalized Haar

Received by the editors December 24, 1960.

1 Research supported in part by the National Science Foundation.
measure of H. Associated with H there are two projection operators on $C(G)$. Namely, $f \mapsto R_H f$ and $f \mapsto L_H f$. These are defined by

\[
R_H f \cdot (g) = \int R_H f \cdot (g) \, dh, \quad R_H f \cdot (g) = f(gh).
\]

\[
L_H f \cdot (g) = \int L_H f \cdot (g) \, dh, \quad L_H f \cdot (g) = f(h^{-1}g).
\]

When H is an invariant subgroup the automorphism $h \mapsto ghg^{-1}$, $g \in G$, preserves the normalized Haar measure, so that $\int f(gh) \, dh = \int f(hg) \, dh$ and $L_H = R_H$. Similar computations show that when H is invariant $R_HK = L_HK$. A function $f \in C(G)$ is constant on the left cosets of G modulo K if and only if $R_K f = f$. Thus the two spaces $R_K C(G)$ and $C(X)$ are isomorphic, and using this isomorphism there is a one-to-one correspondence between homogeneous processes on X and positive, constant-preserving semi-groups $(P_t)_{t \geq 0}$ on $C(G)$ which satisfy $L_g P_t = P_t L_g$, $g \in G$; $R_K P_t = P_t R_K = P_t$; and which are strongly continuous on $C(G)$ when $t > 0$ and on the subspace $R_K C(G)$ at $t = 0$. We call the latter a K-homogeneous process on G.

Because of the homogeneity it suffices to prove (1.1) for a fixed $x \in X$, say for the coset K of G/K. Furthermore, it suffices to prove the limit (1.1) exists and is finite. The positivity of P_t can then be used to show this limit has the form $Q_x(f)$ described in the statement of Property II. With these modifications the theorem can be restated.

Restatement of the theorem. If P_t is a K-homogeneous process on G and $f \in R_K C(G)$ vanishes on a neighborhood of K, then

\[
t^{-1} P_t f \cdot (e) \to \text{a finite limit as } t \to 0.
\]

One further reduction is necessary before proceeding. This is to notice that it suffices to prove the restatement of the theorem when G is σ-compact (a countable union of compact sets). To see this let A_t be a σ-compact set in G on which the measure $P_t(e, \cdot)$ is concentrated, and let G' be the subgroup of G generated by some compact neighborhood D of K and the A_t, t-rational. G' is closed and σ-compact and contains the support of every $P_t(e, \cdot)$, $t \geq 0$, because $P_{t} f \cdot (e)$ is continuous in $t > 0$. By homogeneity the support of the functional $f \mapsto P_{t} f \cdot (g)$, $g \in G'$, is also contained in G' and, in fact, $P_{t}(g, A)$, $g \in G'$, A Borel in G', defines a K-homogeneous process on G' with a unique extension to G. Clearly the limit (2.1) is unaffected by the values of f outside G' and one may as well assume G is σ-compact.
3. **Proof of the theorem.** This theorem has already been proved when X is separable in [1, §3]; so it is sufficient here to reduce the proof to the separable case. The key element in this proof is the following lemma which was suggested to the author by an argument in [2, p. 58].

Lemma. Let G be a locally compact, Hausdorff, σ-compact topological group and let $f \in C(G)$. Then there is a compact invariant subgroup N of G such that $L_N f = f$ and G/N is separable.

To prove (2.1) from the lemma, simply note that $P_t' = P_t L_N = L_N P_t$ defines an NK-homogeneous process on G and that $f = L_N f = L_N R_{NK} f = R_{NK} f$ vanishes on a neighborhood of NK. Since G/NK is separable, the separable version of (2.1) as proved in [1] implies that

$$t^{-1} P_t L_N f \cdot (e) = t^{-1} P_t f \cdot (e) \rightarrow \text{a limit} \quad \text{as } t \rightarrow 0.$$

4. **Proof of the lemma.** f is constant at infinity and hence uniformly continuous on G. Let W_n be a compact neighborhood of the identity e such that for every $g \in G$, $|f(gk) - f(g)| < 1/n$ when $k \in W_n$. We shall prove there is a compact invariant subgroup $N \subseteq \bigcap_n W_n$ such that G/N is separable. Clearly for any such N, $L_N f = f$. To show the existence of N let C_n be an increasing sequence of compact sets which cover G and choose V_n inductively so that

1. V_n is a compact symmetric neighborhood of e.
2. $V_n^2 \subseteq V_{n-1} \cap W_n$.
3. $g^{-1} V_n g \subseteq V_{n-1}$ for every $g \in C_n$.

$N = \bigcap_n V_n$ is a compact invariant subgroup of G. If T is the canonical projection $G \rightarrow G/N$, the sets $T(V_n)$ form a basis for the neighborhoods at the identity in G/N because for each open $U \supseteq N$, $V_n N - U$ is a decreasing sequence of compact sets with empty intersection and consequently $V_n N \subseteq U$ for some n. Since G/N is a σ-compact uniform space with a countable basis for its uniformity it follows that G/N is separable. Alternatively, G/N is a σ-compact metrizable space and hence separable.

References

University of California, Berkeley