A NOTE ON THE BOUNDEDNESS OF SOLUTIONS OF LINEAR PARABOLIC EQUATIONS

A. McNABB

Hartman and Wintner [1] obtained a Sturmian comparison theorem for self-adjoint second order elliptic equations of the form

\[\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + fu = 0, \quad a_{ij} = a_{ji}, \]

in a bounded domain \(B \) with boundary \(\partial B \). In this note, their method is slightly modified to prove the following theorem.

Denote by \(D \) the semi-infinite cylinder \(\{(x, t) : x \in B, t > 0\} \), by \(\bar{D} \) its closure and by \(D_T \) the intersection of \(D \) with the half-space \(t \leq T \). Suppose \(u = u(x) \) is a solution of equation (1) which is continuous in \(\bar{B} \) the closure of \(B \), vanishes on \(\partial B \) and has continuous second derivatives in \(B \). Again, suppose \(w = w(x, t) \) is defined and continuous in the closed region \(\bar{D}_T \), is positive on \(B \) at \(t = 0 \) and on \(\partial B \) for all \(t \geq 0 \) and has continuous derivatives \(\partial w/\partial t, \partial^2 w/\partial x_i \partial x_j \) which satisfy the parabolic equation

\[\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial w}{\partial x_j} \right) + Fw = C \frac{\partial w}{\partial t}, \quad A_{ij} = A_{ji}, \]

in \(D_T \) for all \(T > 0 \). The functions \(A_{ij}, \partial A_{ij}/\partial x_i, F \) and \(C \) are uniformly bounded continuous functions of \(x_i \) and \(t \) in \(D_T \) for any given \(T > 0 \), while \(C \) is bounded in \(D \) by two positive constants \(C_0 \) and \(C_1 \) \((0 < C_0 \leq C \leq C_1)\) and the quadratic form \(\sum_{i,j} A_{ij} \xi_i \xi_j \) is non-negative at all points in \(D \).

Theorem 1. If \(\int_B \left\{ u^2 (F - f) + \sum_{i,j=1}^{n} (a_{ij} - A_{ij}) (\partial u/\partial x_i) (\partial u/\partial x_j) \right\} \, dt \geq \epsilon(t) \) for all \(t > 0 \) and \(\int_0^T \epsilon(t) \, dt \) tends to infinity with \(T \), then \(w \) is unbounded in \(D \).

Proof. Since \(w > 0 \) on \(\bar{B} \) at \(t = 0 \) and on \(\partial B \) for all \(t > 0 \), the maximum principle for parabolic equations (see [2]) implies \(w > 0 \) in \(D_T \) for all \(T > 0 \).

The Green identity leads from the boundary condition \(u = 0 \) on \(\partial B \), to the divergence relation

\[\int_B \left\{ \sum_{i=1}^{n} \frac{\partial}{\partial x_i} (u^2 h) \right\} \, dt = 0 \quad \text{for all } t \geq 0, \]

Received by the editors November 14, 1960 and, in revised form, February 20, 1961.

262
where \(h^i \) is the \(t \)-dependent vector function

\[
h^i = \sum_{j=1}^{n} A_{ij} \frac{\partial w}{\partial x_j}.
\]

This vector is finite at each point of \(D \) since \(w > 0 \) in this region.

Since \(u \) is a solution of (1) and vanishes on \(\partial B \), another application of Green's identity shows that

\[
\int_B \left\{ \sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} - f u^2 \right\} d\tau = 0.
\]

It is clear from (4) and (2) that

\[
\sum_{i=1}^{n} \frac{\partial h^i}{\partial x_i} = C \frac{\partial w}{\partial t} - F - \sum_{i,j=1}^{n} \frac{A_{ij}}{w^2} \frac{\partial w}{\partial x_i} \frac{\partial w}{\partial x_j}
\]

and using this in conjunction with (3) and (5), we see that

\[
\int_B \frac{u^2 C}{w} \frac{\partial w}{\partial t} d\tau = \int_B \left\{ \sum_{i,j=1}^{n} \left(a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} - 2 \frac{u}{w} A_{ij} \frac{\partial u}{\partial x_i} \frac{\partial w}{\partial x_j} \right. \right.
\]

\[
\left. + \frac{u^2}{w^2} A_{ij} \frac{\partial w}{\partial x_i} \frac{\partial w}{\partial x_j} \right\} + u^2(F - f) \right\} d\tau,
\]

for all \(t \geq 0 \). The right-hand side of this equation can be rewritten in the form

\[
\int_B \left\{ \sum_{i,j=1}^{n} A_{ij} \left(\frac{\partial u}{\partial x_i} - \frac{u}{w} \frac{\partial w}{\partial x_i} \right) \left(\frac{\partial u}{\partial x_j} - \frac{u}{w} \frac{\partial w}{\partial x_j} \right) \right\} d\tau
\]

\[
+ \int_B \left\{ u^2(F - f) + \sum_{i,j=1}^{n} (a_{ij} - A_{ij}) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \right\} d\tau,
\]

since \(A_{ij} = A_{ji} \).

Since the quadratic form \(\sum_{i,j=1}^{n} A_{ij} \xi_i \xi_j \) is positive definite or at least non-negative and the second term of expression (8) is assumed greater than or equal to \(\epsilon(t) \), we see from (7) that \(\frac{\partial z}{\partial t} \geq \epsilon(t) \), where \(z = \int_B C u^2 \log w d\tau \). But then \(z(T) \geq z(0) + \int_0^T \epsilon(t) dt \) and is unbounded if \(\int_0^T \epsilon(t) dt \) tends to infinity with \(T \). If \(z \) is unbounded, \(w \) cannot be bounded; for if it were bounded by \(w_0 \) for all \(T \) we would have \(z(T) \leq \int_B C u^2 \log w d\tau \) always.

Protter [3] extended the comparison theorem of Hartman and Wintner to a form valid for a pair of general linear elliptic equations. A corresponding extension of Theorem 1 is given below.

Theorem 2. If \(u \) and \(w \) satisfy the general linear equations
\begin{align}
(9) \quad \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + \sum_{i=1}^{n} b_i \frac{\partial u}{\partial x_i} + f u = 0, \\
(10) \quad \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial w}{\partial x_j} \right) + \sum_{i=1}^{n} B_i \frac{\partial w}{\partial x_i} + F w = C \frac{\partial w}{\partial t},
\end{align}

in \(B \) and \(D \), and the boundary and continuity conditions of Theorem 1, then \(w \) is unbounded in \(D \) if \(\int_0^T \varepsilon(t) \, dt \) tends to infinity with \(T \) and

\[
\int_B \left\{ \sum_{i,j=1}^{n} \left(a_{ij} - A_{ij} \right) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + \frac{u^2}{4} \left[(F - f) - \sum_{i,j=1}^{n} A_{ij} B_{ij} + 2 \sum_{i=1}^{n} \left(\frac{\partial b_i}{\partial x_i} - \frac{\partial B_i}{\partial x_i} \right) \right] \right\} \, d\tau
\]

is greater than or equal to \(\varepsilon(t) \) for all \(t > 0 \). \(A_{ij} \) denote the elements of the inverse matrix of \(A_{ij} \) and the functions \(\partial b_i/\partial x_i \), \(\partial B_i/\partial x_i \) are assumed continuous in \(B \) and \(D \) respectively.

Proof. Let us construct an integral corresponding to (7) with its left-hand side, like (8), consisting of an integral of a non-negative form containing all terms involving the function \(w \), and a residual integral containing only terms involving the function \(u \) and the coefficients of equations (9) and (10).

Consider the expression

\[
E = \int_B \left\{ \sum_{i,j=1}^{n} \left(a_{ij} - A_{ij} \right) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + \sum_{i=1}^{n} u \frac{\partial u}{\partial x_i} \left(B_i - b_i \right) + (F - f) u^2 \right\} \, d\tau
\]

\[
+ \int_B \left\{ \sum_{i,j=1}^{n} A_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} - \sum_{i=1}^{n} u \frac{\partial u}{\partial x_i} B_i - F u^2 \right\} \, d\tau.
\]

The term \(F u^2 \) of the second integral can be eliminated by subtracting from it the vanishing integral

\[
E' = \int_B \left\{ \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(u^2 \sum_{j=1}^{n} \frac{A_{ij}}{w} \frac{\partial w}{\partial x_j} \right) \right\} \, d\tau
\]

\[
= \int_B \left\{ \frac{C u^2}{w} \frac{\partial w}{\partial t} - F u^2 - \frac{u^2}{w} \sum_{i=1}^{n} B_i \frac{\partial w}{\partial x_i} - \sum_{i,j=1}^{n} \left(\frac{u^2}{w^2} A_{ij} \frac{\partial w}{\partial x_i} \frac{\partial w}{\partial x_j} - 2 \frac{u}{w} A_{ij} \frac{\partial u}{\partial x_i} \frac{\partial w}{\partial x_j} \right) \right\} \, d\tau.
\]
Since E is zero by virtue of (9),

$$
\frac{\partial z}{\partial t} = \int_B \frac{Cu^2}{w} \frac{\partial w}{\partial t} \, d\tau
$$

$$
= \int_B \left\{ \sum_{i,j=1}^{n} (a_{ij} - A_{ij}) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + \sum_{i=1}^{n} u \frac{\partial u}{\partial x_i} (B_i - b_i) + (F - f)u^2 \right\} \, d\tau
$$

$$
+ \sum_{i=1}^{n} u \frac{\partial u}{\partial x_i} \frac{\partial w}{\partial x_i}
$$

$$
+ \int_B \left\{ \sum_{i,j=1}^{n} A_{ij} \left(\frac{\partial u}{\partial x_i} - u \frac{\partial w}{\partial x_i} \right) \left(\frac{\partial u}{\partial x_j} - u \frac{\partial w}{\partial x_j} \right) \right\} \, d\tau
$$

$$
- \sum_{i=1}^{n} uB_i \left(\frac{\partial u}{\partial x_i} - u \frac{\partial w}{\partial x_i} \right) \, d\tau
$$

(14)

$$
= \int_B \left\{ \sum_{i,j=1}^{n} (a_{ij} - A_{ij}) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + \frac{u^2}{4} \left[A(F - f) - A^{ij}B_iB_j + 2 \sum_{i=1}^{n} \left(\frac{\partial b_i}{\partial x_i} - \frac{\partial B_i}{\partial x_i} \right) \right] \right\} \, d\tau
$$

$$
+ \int_B \left\{ \sum_{i,j=1}^{n} A_{ij} \left(\frac{\partial u}{\partial x_i} - u \frac{\partial w}{\partial x_i} - \sum_{k=1}^{n} A^{ik}B_k \right) \frac{\partial u}{\partial x_j} \frac{\partial w}{\partial x_j} \right\} \, d\tau
$$

where A^{ij} is the inverse matrix of A_{ij}. The matrix A_{ij} is required to be non-singular in Theorem 2 as well as non-negative in D. Since $\sum_{i,j=1}^{n} A_{ij} \xi_i \xi_j$ is positive definite in D the second integral of (14) is non-negative. The remainder of the proof now proceeds as for Theorem 1.

Bibliography

Applied Mathematics Laboratory,
Department of Scientific and Industrial Research,
Wellington, New Zealand