Trigonometric series with quasi-monotone coefficients
HTML articles powered by AMS MathViewer
- by S. M. Shah
- Proc. Amer. Math. Soc. 13 (1962), 266-273
- DOI: https://doi.org/10.1090/S0002-9939-1962-0154055-9
- PDF | Request permission
References
- S. Aljančić, R. Bojanić, and M. Tomić, Sur l’intégrabilité de certaines séries trigonométriques, Acad. Serbe Sci. Publ. Inst. Math. 8 (1955), 67–84 (French). MR 76911
- R. P. Boas Jr., Integrability of trigonometric series. III, Quart. J. Math. Oxford Ser. (2) 3 (1952), 217–221. MR 54071, DOI 10.1093/qmath/3.1.217 T. W. Chaundy and A. E. Jolliffe, The uniform convergence of a certain class of trigonometric series, Proc. London Math. Soc. (2), 15 (1916), 214-216.
- G. H. Hardy and W. W. Rogosinski, Fourier Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 38, Cambridge University Press, 1944. MR 0010206
- S. M. Shah, A note on quasi-monotone series, Math. Student 15 (1947), 19–24 (1948). MR 28435
- Siobhan O’Shea, Note on an integrability theorem for sine series, Quart. J. Math. Oxford Ser. (2) 8 (1957), 279–281. MR 97686, DOI 10.1093/qmath/8.1.279
- Gen-ichiro Sunouchi, Integrability of trigonometric series, J. Math. Tokyo 1 (1953), 99–103. MR 0064181
- Otto Szász, Quasi-monotone series, Amer. J. Math. 70 (1948), 203–206. MR 22917, DOI 10.2307/2371946
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 13 (1962), 266-273
- MSC: Primary 42.11
- DOI: https://doi.org/10.1090/S0002-9939-1962-0154055-9
- MathSciNet review: 0154055