so

\[(7) \quad (y_2y'_1 - y_1y'_2)(x) = \int_{a}^{x} y_2(s)y_1(s)[F(y_2(s), s) - F(y_1, s)]\, ds.\]

By hypothesis \((y_2y'_1 - y_1y'_2)(b) = 0\). The integrand in (7) is positive, however, as long as \(y_2(s) > y_1(s)\) and in particular on some interval \((a, a)\) — because \((y_2 - y_1)'(a) > 0\). In fact, \(a\) may be taken as \(b\) because the same argument as in Lemma 1 shows that the graphs of \(y_2(x)\) and \(y_1(x)\) can not intersect on \((a, b)\). Thus the right side of (7) does not tend to zero as \(x \to b^-\).

Proof of the theorem. The existence of at least one solution of (1) + (C) has been proved by Nehari [1, Theorem IV]. By the preceding lemmas there is at most one such solution.

Reference

Massachusetts Institute of Technology

ON THE MEASURABILITY OF FUNCTIONS IN TWO VARIABLES

MARK MAHOWALD

Let \((X, \mu)\) and \((Y, \nu)\) be two compact spaces having regular Borel measures defined on them. By a measurable modification \(f(x, y)\) of a function \(f(x, y)\) we mean a function measurable in both variables together and for which \(f(x- y) = f(x)\) almost everywhere \([\nu]\) for every \(x\).

The purpose of this note is to prove the following theorem.

Theorem. If \(Y\) is metric and if \(f(x, y)\) has a measurable modification and \(f(x- y)\) is continuous for almost all \(x\), then \(f(x, y)\) is measurable in both variables together.

This theorem was discovered in an effort to prove that the Nelson canonical version [2] is measurable if it has a measurable modification. The theorem would prove this result except for the restriction that \(Y\) be metric.

Received by the editors December 30, 1960 and, in revised form, April 14, 1960.

1 Research supported by the United States Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-265.

Reproduction in whole or part is permitted for any purpose of the United States Government.
We now prove the theorem; without loss of generality we can assume that \(f(x, \cdot) \) is continuous for all \(x \). Let \(f(x, y) \) be a measurable modification. By Lusin's theorem [1], we can find a compact subset \(C \) of \(X \times Y \) on which \(\bar{f}(x, y) \) is continuous and whose measure is greater than \(1/2 \) the total measure of \(X \times Y \). We can choose \(C \) such that every nonempty relatively open subset has positive measure. Let \(\{ U_n \} \) be a countable basis for the topology of \(Y \). Then in particular \((X \times U_n) \cap C \) is empty or has positive measure. In either case \(\nu(\{(X \times U_n) \cap C\}) \) is a measurable function of \(x \). Let \(A_n = \{ x ; \nu(\{(X \times U_n) \cap C\}) = 0 \} \). Then \(A_n \) is a measurable subset of \(X \) and \(B_n = \{(A_n \times Y) \cap (X \times U_n) \cap C \} \) has measure zero. Indeed \((B_n)_x = \emptyset \) if \(x \) is not in \(A_n \) and equals \(\{(X \times U_n) \cap C\}_x \) if \(x \) is in \(A_n \). Hence \(\nu((B_n)_x) = 0 \) for all \(x \) and, since \(B_n \) is a measurable subset of \(X \times Y \), Fubini's theorem implies that it has measure zero. Therefore, \(\bigcup B_n = D \) has measure zero.

Let \(E = C - D \). First we show that \(E_x \) is compact for each \(x \). Let \(N_x = \{ n ; x \in A_n \} \). Then

\[
E_x = (C - D)_x = \left(\bigcap_{n=1}^{\infty} (C - B_n) \right)_x = \bigcap_{n \in N_x} (C_x - (B_n)_x) = \bigcap_{n \in N_x} (C_x - U_n).
\]

This shows that \(E_x \) is compact. If \(E_x \) has positive measure then it is the support of \(\nu \) restricted to it. To see this let \(F_x \) be the support, then \(C_x - F_x \) is relatively open and there exists \(U \subset Y \) such that \(C_x - F_x = U \cap C_x \). Let \(U_n \) be a sequence of sets of \(\{ U_n \} \) whose union is \(U \). Then each \(U_n \) is in \(N_x \) and, therefore, \(U \cap U_n \supset U \). Hence \(E_x \subset F_x \); therefore \(E_x = F_x \).

On \(E \), \(f(x, \cdot) \) is continuous; therefore for each \(x \), \(f(x, \cdot) \) is continuous on \(E_x \) and equals \(\bar{f}(x, \cdot) \) almost everywhere. Now if \(\nu(E_x) \neq 0 \) then Theorem 55.B of [1] implies they are equal everywhere. Hence \(\bar{f}(x, y) = f(x, y) \) for almost all \((x, y) \), \([\mu \times \nu] \), in \(E \). An inductive application of this procedure in the complement of \(C \) will yield the theorem.

REFERENCES

Syracuse University