A NOTE ON THE GENUS OF A KNOT

S. KINOSHITA

For each polygonal knot \(k \) in a 3-sphere \(S^3 \) there exists a polyhedral orientable surface \(M_k \) whose boundary is \(k \) ([1; 2]). The genus of such a knot \(k \), denoted by \(g(k) \) below, was defined by H. Seifert [2] as the minimal number of genera of all such \(M_k \). Now let us define \(\bar{g}(k) \) for each polygonal knot \(k \) as the minimal number of genera of all orientable surfaces \(M_k \) whose boundaries are \(k \), where \(M_k \) may be wildly imbedded. Is \(\bar{g}(k) = g(k) \)? This is a problem proposed by R. H. Fox. The purpose of this short note is to prove that the equality holds.

Proof. Let \(k \) be a polygonal knot in \(S^3 \). Let \(M \) be a polyhedral orientable surface and \(h \) a homeomorphism of \(M \) in \(S^3 \) such that \(h(\partial M) = k \). Then we are only to prove that \(g(M) \), the genus of \(M \), is equal to or greater than \(g(k) \).

Let \(T \) be a tubular neighborhood of \(k \). Bing’s approximation theorem [3] shows that for each \(\varepsilon > 0 \) there exists a semilinear homeomorphism \(h' \) of \(M \) into \(S^3 \) such that for each \(x \in M \) \(d(h(x), h'(x)) < \varepsilon \). If we choose \(\varepsilon \) as to be sufficiently small, we may suppose that \(h'(\partial M) = k' \) is contained in \(T \) and that \(k \) is a companion of \(k' \) with the winding number one in the sense of H. Schubert [4]. By definition \(g(h'(M)) \geq g(k') \). Further H. Schubert [4] shows that if \(k \) is a companion of \(k' \) with the winding number \(\alpha \), then \(g(k') \geq \alpha g(k) + g(k^*) \), where \(k^* \) is a suitably defined polygonal knot. Thus \(g(k') \geq g(k) \) in our case. Therefore \(g(M) = g(h'(M)) \geq g(k') \geq g(k) \), which completes the proof.

References

Institute for Advanced Study
and Osaka University

Received by the editors May 1, 1961.

1 Supported by National Science Foundation grant G14779.