A REAL INVERSION FORMULA FOR A CLASS OF CONVOLUTION TRANSFORMS

CHARLES STANDISH

In this paper an inversion formula involving only values of \(f(x) \) along the real axis is obtained for the class of convolution transforms described below. A real inversion formula involving \(f(x) \) and its derivatives was obtained by H. Pollard [1] and a complex inversion formula by Hirschman and Widder [2].

We shall prove the following

Theorem. Let

\[
(1) \quad f(x) = \int G(x - t)\phi(t)dt,
\]

where

\[
\int G(t) \exp(-ist)dt = \left[\prod_{k=1}^{\infty} \left(1 + \frac{s^2}{a_k^2} \right) \right]^{-1} = F(is)
\]

and

\[
\sum_{k=1}^{\infty} \frac{1}{a_k} < \infty, \quad 0 < a_k \leq a_{k+1}, \quad k = 1, 2, \ldots.
\]

If the integral (1) converges for a single real \(x \), it converges for all real \(x \) and is inverted by

\[
\lim_{t \to 0^+} \lim_{n \to \infty} \int f(\xi)d\xi \int \prod_{k=1}^{n} \left(1 + \frac{u^2}{a_k^2} \right) \cdot \exp[-tu^2 + iu(x - \xi)]du = \phi(x)
\]

for almost every \(x \).

It is assumed that \(\phi(t) \) is Lebesgue integrable on every finite interval and the integral in (1) is interpreted as

\[
\lim_{R \to \infty, \ S \to \infty} \int_{-R}^{R} \int_{-S}^{S}.
\]

When limits are omitted from an integral appearing in the text, the

Presented to the Society, April 22, 1961; received by the editors March 6, 1961 and, in revised form, May 1, 1961.

394
range of integration is understood to be \((-\infty, \infty)\).

It is convenient to decompose the proof of the theorem into several lemmas.

Lemma 1. If the transform (1) converges for a single real \(x\), it converges for all real \(x\).

This was established in [1]. We note that \(G(t)\) is a class I kernel in the sense of Widder and Hirschman [2, p. 120].

Lemma 2.

\[
(2\pi)^{-1} \int F(is) \exp its \, ds
\]

exists and equals \(G(t)\).

By [2, p. 52], \(F(is) = O(|s|^{-p})\) for every \(p\), hence is in \(L(-\infty, \infty)\) from which the result follows immediately.

Lemma 3.

\[
\int f(\xi) d\xi \int \prod_{k=1}^{n} \left(1 + \frac{u^2}{a_k^2}\right) \exp \left(-tu^2 - iu(x - \xi)\right) du
\]

exists.

\(f(\xi) = o(\exp(a_1|\xi|))\) by [2, Theorem 2.1, p. 147]. The inner integral is easily shown by a direct evaluation to be \(O(\exp(-A(x-\xi)^2))\), \(0 < A < (4\epsilon)^{-1}\), which establishes the result.

Lemma 4.

\[
f_A(\xi) = \int_{-A}^{A} G(\xi - s)\phi(s) ds = O(\exp(a_1|\xi|))
\]

independent of \(A\).

From [2, p. 123] \(G(x-t)/G(-t)\) is nondecreasing or nonincreasing as a function of \(t\) according as \(x\) is greater or less than zero. The asymptotic estimates furnished by [2, Theorem 2.1, p. 108] show furthermore that

\[
\lim_{A \to \infty} G(x - A)/G(-A) = \exp a_1x,
\]
\[
\lim_{A \to -\infty} G(x - A)/G(-A) = \exp(-a_1x).
\]

In the case \(x > 0\), the mean value theorem enables us to write:
\[f_A(x) = \int_{-A}^{A} [G(x - t)/G(-t)]G(-t)\phi(t)dt \]
\[= G(x - A)/G(-A) \int_{x}^{A} G(-t)\phi(t)dt, \]
hence
\[|f_A(x)| \leq B \exp a_1x, \]
where
\[B = \sup_{a \in R} \int_{R}^{S} G(-t)\phi(t)dt. \]

A similar argument applies in the case \(x < 0\).

Lemma 5.

\[\int f(\xi)d\xi \int \prod_{k=1}^{n} (1 + u^2/a_k^2) \exp (iu(x + \xi) - tu^2)du \]
\[= \int \phi(s)ds \int \prod_{k=n+1}^{\infty} \{1 + u^2/a_k^2\}^{-1} \exp (iu(x - s) - tu^2)du. \]

The technique employed in the proof of this lemma is the one employed by Blackman [4] in his treatment of convolutions with rational kernels. We have by the definition of \(f(x)\), (3) is equal to

\[\int d\xi \left[\lim_{A \to \infty} \int_{-A}^{A} G(\xi - s)\phi(s)ds \right] G_n(x - \xi), \]

where \(G_n(x - \xi)\) is the value of the inner integral in (3). The estimate of Lemma 4 enables us to take the limit outside the outer integral whence (4) becomes

\[\lim_{A \to \infty} \int G_n(x - \xi)d\xi \int_{-A}^{A} G(\xi - s)\phi(s)ds. \]

By Fubini's theorem, we can interchange the order of integration which replaces (5) by

\[\lim_{A \to \infty} \int_{-A}^{A} \phi(s)ds \int G_n(x - \xi)G(\xi - s)d\xi. \]

A straightforward calculation shows the inner integral above can be expressed as
\[
\int \left[\prod_{k=n+1}^{\infty} \left(1 + \frac{u^2}{a_k^2}\right) \right]^{-1} \exp \left(iu(x - s) - tu \right) du,
\]
completing the proof of the lemma.

Lemma 6.

\[
\lim_{n \to \infty} \int \phi(s) \left[H_n(x - s) - \frac{1}{\sqrt{4\pi t}} \exp \left(-\frac{(x - s)^2}{4t} \right) \right] ds = 0,
\]

where

\[
H_n(x) = \int \left[\prod_{k=n+1}^{\infty} \left(1 + \frac{u^2}{a_k^2}\right) \right]^{-1} \exp \left(iux - tu \right) du.
\]

\[
\int \phi(s) \exp \left(-\frac{(x - s)^2}{4t} \right) ds
\]
a exists for every real \(x \). Given \(\epsilon > 0 \), we can for any fixed \(x \) choose \(R \) so large that

\[
\sup_{R < s < \infty} \left(\frac{1}{\sqrt{4\pi t}} \right) \left| \int_{-\infty}^{s} \phi(s) \exp \left(-\frac{(x - s)^2}{4t} \right) ds \right| < \epsilon,
\]

\[
\sup_{R < s < \infty} \left(\frac{1}{\sqrt{4\pi t}} \right) \left| \int_{s}^{-\infty} \phi(s) \exp \left(-\frac{(x - s)^2}{4t} \right) ds \right| < \epsilon.
\]

It is easily established that:

\[
d/dx(H_n(x)/\exp(-x^2/4t)) \geq 0, \quad x \geq 0,
\]

\[
\leq 0, \quad x \leq 0.
\]

By the mean value theorem, if \(R > x \),

\[
\left| \int_{-\infty}^{\infty} \phi(s) H_n(x - s) ds \right|
\]

\[
\leq \left[H_n(x - R)/\exp(-x R^2/4t) \right] \times \left| \int_{-\infty}^{\epsilon} \phi(s) \exp(-x R^2/4t) ds \right|
\]

\[
\leq \left[H_n(x + R)/\exp(-(x + R)^2/4t) \right] \times \left| \int_{\epsilon}^{-R} \phi(s) \exp(-(x - s)^2/4t) ds \right|
\]

\[
H_n(x) \text{ tends boundedly to } (4\pi t)^{-1/2} \exp(-x^2/4t), \text{ enabling us to conclude that as } n \to \infty
\]
\[
\int_{-R}^{R} \phi(s)H_n(x - s)ds \to (4\pi t)^{-1/2} \int_{-R}^{R} \phi(s) \exp(-(x - s)^2/4t)ds.
\]

Furthermore, the lim sup of the expression in (6) and (7) are each \(\leq \epsilon \). Thus

\[
0 \leq \limsup_{n \to \infty} \left| \int \phi(s) \left[H_n(x - s) - (4\pi t)^{-1/2} \exp(-(x - s)^2/4t) \right] ds \right| \leq 2\epsilon.
\]

Since \(\epsilon \) is arbitrary, this proves the lemma.

We complete the proof of the theorem with

Lemma 7.

\[
\lim_{t \to 0^+} (4\pi t)^{-1/2} \int \phi(s) \exp(-(x - s)^2/4t)ds = \phi(x)
\]

almost everywhere.

This is Corollary 7.2b of Theorem 7.2 of [2, p. 189].

Bibliography

IBM Corporation and

North Carolina State College