A DECOMPOSITION THEOREM FOR
n-DIMENSIONAL MANIFOLDS

P. H. DOYLE AND J. G. HOCKING

Throughout our discussion an n-dimensional manifold will mean a connected, separable metric space in which each point has an open n-cell neighborhood. Our main result can be stated in the following manner.

Theorem 1. Let M^n be an n-dimensional manifold. Then $M^n = P^n \cup C$, where P^n is homeomorphic to euclidean n-space, E^n, and C is a closed subset of M^n of dimension at most $n-1$; and $P^n \cap C = \emptyset$.

Considered from one point of view Theorem 1 is a generalization of Corollary 1 in [3]. From still another the result says that any n-manifold is “almost triangulable.” The proof of Theorem 1 leads to more interesting results in the case of compact manifolds which we shall consider presently.

The steps in the proof will be described here. If C^n is a closed n-cell in M^n such that $\text{Bd } C^n$, the boundary of C^n, is bicollared in M^n, [2], and if $\{a_i\}$ is a countable dense subset of $M^n \setminus C^n$, consider the set $C^n \cup a_i$. Does this set lie on the interior of an n-cell in M^n with a bicollared boundary? If this were the case and if C_1 is such an n-cell, one could ask if $C_1 \cup a_2$ lies interior to an n-cell in M^n with a bicollared boundary. Continuing in this way with sets of the form $C_i \cup a_{i+1}$, if such enclosure is always possible, we obtain an increasing sequence $\{C_i\}$ of closed n-cells in M^n, $\text{Bd } C_i$ is bicollared in M^n and $\text{int } C_{i+1} \supseteq C_i$, where interior C_{i+1} is written $\text{int } C_i$. Next we observe that $P^n = \bigcup_i C_i$ is E^n by either a direct construction of cells with annuli between them or by applying the main result of [1]. Then $M^n - P^n = C$ is nowhere dense in M^n and closed since P^n is open. The sets P^n and C would then meet the requirements of Theorem 1.

From this outline it is clear that the proof of Theorem 1 follows immediately from a lemma.

Lemma 1. Let M^n be an n-manifold and D^n a closed n-cell in M^n with bicollared boundary. Then if p is any point in M^n, $D^n \cup p$ lies in $\text{int } D_i^n$, where D_i^n is a closed n-cell and $\text{Bd } D_i^n$ is bicollared.

Proof. Let q be any point in $\text{int } D^n$. There is a homeomorphism h of M^n onto M^n which is pointwise fixed outside any neighborhood V of D^n and which carries D^n into any preassigned neighborhood U of q.
while \(h(q) = q \). This follows from the fact that \(\text{Bd} \, D^n \) is bicciliated.

Since \(M^n \) is a manifold, the set \(p \cup q \) lies interior to an \(n \)-cell in \(M^n \) and so interior to an \(n \)-cell with a bicciliated boundary in \(M^n \). Evidently we need only select \(\mathcal{U} \) in the interior of such a cell to obtain the proof of Lemma 1.

With the proof of Lemma 1 we obtain Theorem 1. In the case \(M^n \) is compact the conditions on \(C \) are stronger.

Theorem 2. Let \(M^n \) be a compact \(n \)-dimensional manifold. Then \(M^n = P^n \cup C \), where \(P^n \) is homeomorphic to \(E^n \), and \(C \) is a nonseparating continuum in \(M^n \); \(P^n \cap C = \emptyset \).

It is convenient to call the decomposition \(P^n \cup C \) of \(M^n \) in the above theorems a standard decomposition if \(P^n \) is obtained as in the proof of Theorem 1.

Corollary 1. Let \(M^n \) be a compact \(n \)-manifold and \(M^n = P^n \cup C \) a standard decomposition of \(M^n \). Then if there is a homeomorphism \(h \) of \(M^n \) onto \(M^n \) such that \(h(C) \subset P^n \), then \(M^n \) is an \(n \)-sphere.

Proof. By Theorem 2, \(C \) is compact and so \(h(C) \) lies in the interior of a closed \(n \)-cell \(C^* \) in \(P^n \). By the construction of \(P^n \), \(M^n \) is the union of two closed \(n \)-cells with no boundary points in common. Whence, as in Lemma 3 of [4], one can conclude that \(M^n \) is a sphere.

Corollary 2. Let \(M^n \) be a compact \(n \)-compact \(n \)-manifold and let \(M^n = P^n_1 \cup C_1 = P^n_2 \cup C_2 \) be two standard decompositions. If \(C_1 \cap C_2 = \emptyset \), then \(M^n \) is a sphere.

It should be pointed out that the set \(C \) in a standard decomposition need not be nice. In the case of the 2-sphere \(S^2 \), \(C \) may be any nonseparating 1-dimensional continuum in \(S^2 \); so \(C \) need not be locally connected.

Theorem 3. Let \(M^n \) be an \(n \)-manifold and \(S^n \), the \(n \)-sphere. Then there is a map \(f \) from \(M^n \) onto \(S^n \) such that each point of \(S^n \) has a degenerate inverse except perhaps for one point \(p \), and \(\dim f^{-1}(p) \leq n - 1 \).

Proof. The representation of \(P^n \) as an increasing sequence of \(n \)-cells provides an evident map of the type described with \(C \) as the only possible nondegenerate inverse. In case \(M^n = E^n \), \(C \) may be void; however, one may arrange it so that \(C \) is not void even in this case.

In the proof of Corollary 1 to Theorem 2 we observed that a compact \(n \)-manifold which fails to be a sphere cannot be the union of two closed \(n \)-cells having no boundary points in common. Similar results
may be obtained for open regions. If M^n is a compact n-manifold, $P^n \cup C = M^n$, a standard decomposition, let C be in an open set U in M^n such that U is homeomorphic to a subset of E^n. Then if h is an imbedding of U in E^n we note that $h(C)$ is the limit in E^n of a strictly decreasing sequence of closed n-cells with bicollared boundaries in $h(U) \subset E^n$. Whence, we obtain M^n as a union of closed n-cells with disjoint bicollared boundaries and so M^n is an n-sphere. We can then assert another theorem.

Theorem 4. If M^n is a compact n-manifold which is not an n-sphere and if $M^n = P^n \cup C$ is a standard decomposition, then C has no neighborhood in M^n which can be imbedded in E^n.

References

Michigan State University