1. Introduction. Suppose X is a translation-invariant linear subspace of $C_0(R)$ (the space of all continuous functions on the real line R that vanish at infinity) that is dense in $C_0(R)$ with respect to the uniform topology. If μ is a measure on the line such that

$$\int_{-\infty}^{\infty} f(x + t)d\mu(x) = \int_{-\infty}^{\infty} f(x)d\mu(x)$$

for all $f \in X$ and all $t \in R$, does it follow that μ is a constant multiple of the Lebesgue measure?

Our interest in this question arose in the following context. Let Γ be the dual group of a locally compact abelian group G (written additively), and let (x, γ) be the value of the character $\gamma \in \Gamma$ at the point $x \in G$. If $f \in L^1(G)$, its Fourier transform is defined by

$$\hat{f}(\gamma) = \int_G f(x)(-x, \gamma)dx \quad (\gamma \in \Gamma),$$

where dx denotes the Haar measure of G. The inversion formula

$$f(x) = \int_{\Gamma} \hat{f}(\gamma)(x, \gamma)d\gamma \quad (x \in G),$$

where $d\gamma$ denotes the (suitably normalized) Haar measure of Γ, is valid for all $f \in P^1$, the space of all linear combinations of positive definite functions in $L^1(G)$. In two standard texts [1, p. 143; 2, p. 413], (3) is proved by first showing that there is a positive measure μ on Γ such that

$$f(x) = \int_{\Gamma} \hat{f}(\gamma)(x, \gamma)d\mu(\gamma)$$

and

$$\int_{\Gamma} \hat{f}(\gamma)d\mu(\gamma) = \int_{\Gamma} \hat{f}(\gamma + \gamma')d\mu(\gamma)$$

for all $\gamma' \in \Gamma$ and for all $\hat{f} \in P^1$ (the set of all Fourier transforms of $L^1(G)$).
members of P^1). Since P^1 is dense in $C_0(\Gamma)$, it is concluded from (5) that μ is a Haar measure on Γ, and then (4) establishes (3).

In Theorem 1 below we show that the correctness of the italicized statement in the preceding sentence stems from the fact that P^1 is an algebra (under pointwise multiplication). This point is glossed over in both [1] and [2], and the reader is left with the erroneous impression that the only measures μ on Γ that satisfy (5) for a dense subset of functions in $C_0(\Gamma)$ are the Haar measures.\footnote{We are grateful to Mr. J. A. Smoller for raising the question of how to deduce from (5) that μ is a Haar measure.} We are thus led to the following question, to which we have obtained partial answers:

Suppose X is a translation-invariant subspace of $C_0(G)$, μ is a measure on G, and μ acts invariantly on X, i.e.,

\begin{equation}
\int_G f(x + t) d\mu(x) = \int_G f(x) d\mu(x) \quad (f \in X, t \in G).
\end{equation}

What information does this give about μ, and what information does it give about the translation-invariant functional T_μ defined on X by

\begin{equation}
T_\mu(f) = \int_G f(x) d\mu(x).
\end{equation}

By a measure we always mean a complex, countably additive, regular set function defined on the Borel sets of G which is finite for all sets with compact closure. The space of all $f \in C_0(G)$ with compact support will be denoted by $C_c(G)$.

2. Uniqueness theorems.

Theorem 1. Suppose A is a dense translation-invariant subalgebra of $C_0(G)$, μ is a measure on G, and $\int |f| d|\mu| < \infty$ for all $f \in A$. If μ acts invariantly on A, then μ is a constant (complex) multiple of the Haar measure of G.

Proof. Choose $g \in C_c(G)$. Since A is dense in $C_0(G)$, A contains a function h which vanishes at no point of the support of g. Let $k = g/h$; then $k \in C_c(G)$, and so there is a sequence $\{f_n\}$ in A that converges to k uniformly on G. Since $\int |f| d|\mu| < \infty$, Lebesgue’s dominated convergence theorem shows that

\begin{equation}
\lim_{n \to \infty} \int_G f_n(x + t) h(x + t) d\mu(x) = \int_G g(x + t) d\mu(x)
\end{equation}

for every $t \in G$. Since $f_n h \in A$, the left side of (8) is independent of t. The same is therefore true of the right side, and we have shown that
\(\mu\) acts invariantly on \(C_c(G)\).

Since every measure on \(G\) is determined by its action on \(C_c(G)\),
the uniqueness theorem for Haar measure\(^3\) completes the proof.

Theorem 2. Suppose \(\mu\) is a measure on \(G\) that acts invariantly on
a translation-invariant linear subspace \(X\) of \(C_0(G)\), such that \(\int |f| \, d\mu\) < \(\infty\) and \(\int |f| \, dx < \infty\) for all \(f \in X\). If
\[
\int g(x) \, d\mu(x) = 0
\]
for some \(g \in X\), then there exists a constant \(\lambda\) such that
\[
\int f(x) \, d\mu(x) = \lambda \int f(x) \, dx \quad (f \in X).
\]

Proof. For any \(f \in X\), we have
\[
g(0) \int g(x) \, d\mu(x) = \int g(t) \, dt \int f(x-t) \, d\mu(x)
\]
\[
= \int d\mu(x) \int f(x-t) g(t) \, dt,
\]
by the invariant action of \(\mu\) on \(X\) and by Fubini's theorem. Since
\[
\int f(x-t) g(t) \, dt = \int g(x-t) f(t) \, dt,
\]
(11) is symmetric in \(f\) and \(g\), and so
\[
g(0) \int f(x) \, d\mu(x) = \int g(x) \, d\mu(x).
\]
This is (10), with \(\lambda = [g(0)]^{-1} \int g \, d\mu\).

Remarks. (a) This proof is patterned after a simple uniqueness
proof for Haar measure on abelian groups [1, p. 116].
(b) We did not assume that \(X\) is dense in \(C_0(G)\). (Cf. Theorem 3,
however.)
(c) The conclusion of the theorem amounts to the statement that
the functional \(T_\mu\) defined on \(X\) by (7) is also given by integration
with respect to a Haar measure. That is to say, \(\mu\) acts on \(X\) like a
Haar measure. This does not imply, however, that \(\mu\) is itself translation-

invariant.

For example, let \(X\) be the set of all \(f \in C_c(R)\) such that \(\int e^x f(x) e^x \, dx = 0\), and take \(d\mu(x) = (1+e^x) \, dx\). The space \(X\) is translation-invariant,
\(\mu\) acts invariantly on \(X\), and Theorem 3 below shows that \(X\) is even
dense in \(C_0(R)\).

\(^3\) Uniqueness of translation-invariant measures, which is customarily stated only
for positive measures, is valid for complex measures as well. For abelian groups this
follows, for example, from Theorem 2 below, with \(X = C_c(G)\).
(d) If condition (9) is omitted from Theorem 2, the conclusion is no longer valid, even if \(X \) is dense in \(C_0(G) \) and if \(\mu \) is a positive measure.

To see this, let \(X \) be the linear space generated by all translates of even functions \(f \in C_c(R) \) for which \(f(0) = 0 \), and take \(d\mu(x) = x^3dx \). Note that

\[
\int_{-\infty}^{\infty} f(x + t)x^3dx = \int_{-\infty}^{\infty} f(x)(x^3 - 2tx + t^3)dx.
\]

If \(f \) is even, then \(\int f(x)x^3dx = 0 \). Since \(\int f(x)dx = f(0) = 0 \) for all \(f \in X \), \(\mu \) acts invariantly on \(X \). But if \(f(0) = 2, f(3) = -1, f(6) = 0, f \) is linear between these points, \(f(x) = 0 \) for \(x > 6 \), and \(f \) is even, then \(f \in X \) but \(\int_{-\infty}^{\infty} x^3f(x)dx < 0 \). Thus \(\int fd\mu \) is not a constant multiple of \(f(0) \).

3. Subspaces of \(C_0(R) \). In this section, we confine our attention to the group \(R \) of real numbers. We show, first, that translation-invariant subspaces of \(C_0(R) \) are usually dense.

Theorem 3. If a subspace \(X \) of \(C_0(R) \) contains all translates of some nonzero function \(f \) with compact support, then \(X \) is dense in \(C_0(R) \).

Proof. Suppose \(\mu \) is a bounded measure on \(R \) that annihilates \(X \); then

\[
\int_{-\infty}^{\infty} f(x - t)d\mu(x) = 0 \quad (t \in R).
\]

If \(F \) is the Fourier transform of \(\hat{f} \), where \(\hat{f}(x) = f(-x) \), (13) implies that \(F \cdot \hat{\mu} = 0 \). But \(F \) is an analytic function, hence has only isolated zeros, and since \(\hat{\mu} \) is continuous, we conclude that \(\hat{\mu} = 0 \). By the uniqueness theorem for Fourier-Stieltjes transforms, \(\mu = 0 \), and so \(X \) is dense in \(C_0(R) \), by the Hahn-Banach theorem.

Remark. We did not really need to assume that \(f \in C_c(R) \). All we needed was that the zeros of \(\hat{f} \) should form a nowhere dense set.

The examples following Theorem 2 show that a measure that acts invariantly on a translation-invariant subspace \(X \) of \(C_c(R) \) need not be a constant multiple of Lebesgue measure. We have already remarked, however, that a translation-invariant functional (7) on \(X \) is necessarily a multiple of the Lebesgue integral in case some member of \(X \) has a nonzero integral. In the next theorem, we recapture the uniqueness property of translation-invariant functionals on \(X \) even when every member of \(X \) has zero integral. The proof is similar to that of Theorem 2.

Theorem 4. Suppose \(\mu \) is a measure on \(R \) that acts invariantly on a translation-invariant linear subspace \(X \) of \(C_c(R) \). Let \(p \) be the smallest nonnegative integer such that
(14) \[\int_{-\infty}^{\infty} x^p g(x) dx \neq 0 \]

for some \(g \in X \). Then there is a constant \(\lambda \) such that

(15) \[\int_{-\infty}^{\infty} f(x) d\mu(x) = \lambda \int_{-\infty}^{\infty} x^p f(x) dx \quad (f \in X). \]

Note that the right side of (15) is a constant times the \(p \)th derivative of \(f \) at the origin.

Proof. The case \(p = 0 \) is dealt with in Theorem 2.

Suppose \(p > 0 \), \(f \in X \), \(f \neq 0 \), and the support of \(f \) is contained in the interval \([-A, A]\). Let \(f_0 = f \), and for \(k \geq 1 \), let \(f_k(x) = \int_{-A}^{x} f_{k-1}(t) dt \). By induction, one obtains the well-known formula

(16) \[f_k(x) = \frac{1}{(k-1)!} \int_{-A}^{x} (x-t)^{k-1} f(t) dt \quad (k = 1, 2, \cdots). \]

We have chosen \(p \) so that

(17) \[\int_{-A}^{A} f_{k-1}(t) dt = f_k(A) = \frac{1}{(k-1)!} \int_{-A}^{A} (A-t)^{k-1} f(t) dt = 0 \]

for \(1 \leq k \leq p \). Thus, \(f_0, f_1, \cdots, f_p \) all have compact support. Furthermore,

(18) \[f_0(0) = \int_{-\infty}^{\infty} f_p(t) dt = f_{p+1}(A) = \frac{1}{p!} \int_{-\infty}^{\infty} (A-t)^p f(t) dt \]

\[= \frac{(-1)^p}{p!} \int_{-\infty}^{\infty} p f(t) dt. \]

Hence, if \(g \) is a function in \(X \) that satisfies (14), then \(g_p(0) \neq 0 \).

Now, as in the proof of Theorem 2, for any \(f \in X \),

(19) \[g_p(0) \int_{-\infty}^{\infty} f(x) d\mu(x) = \int_{-\infty}^{\infty} d\mu(x) \int_{-\infty}^{\infty} g_p(t) f(x-t) dt. \]

Integration by parts \(p \) times yields

(20) \[\int_{-\infty}^{\infty} g_p(t) f(x-t) dt = \int_{-\infty}^{\infty} g(t) f_p(x-t) dt = \int_{-\infty}^{\infty} f_p(t) g(x-t) dt, \]

and comparison of (19) and (20) shows that

(21) \[g_p(0) \int_{-\infty}^{\infty} f(x) d\mu(x) = f_p(0) \int_{-\infty}^{\infty} g(x) d\mu(x). \]
With \(g \) fixed so that \(g_p(0) \neq 0 \), (21) together with (18) yields (15) and completes the proof.

By virtue of Theorem 4 every measure that acts invariantly on a translation-invariant subspace \(X \) of \(C_c(R) \) differs from a measure \(\lambda x^\rho dx \), for suitable \(\lambda \) and \(\rho \), by a measure that vanishes on all of \(X \). The theorem also furnishes some nonzero measures that vanish on \(X \), namely, the measures \(x^k dx \) for \(0 \leq k < \rho \). Moreover, it provides a clue for finding still other such measures.

For every \(f \in X \), the Fourier transform \(\hat{f} \) of \(f \) can be extended to an entire function in the complex plane. Associate with each complex number \(\alpha \) a nonnegative integer \(m(\alpha) \), the largest integer \(k \) such that \(\hat{f}(z)(z - \alpha)^{-k} \) is regular at \(z = \alpha \) for all \(f \in X \), and let \(E \) be the set of all \(\alpha \) for which \(m(\alpha) > 0 \). If \(X \neq \{ 0 \} \), it is clear that \(E \) has no limit point in the finite plane. An equivalent definition of \(m(\alpha) \) is that

\[
\int_{-\infty}^{\infty} x^k e^{-iax} f(x) dx = 0 \quad \text{for } 0 \leq k < m(\alpha) \text{ and all } f \in X; \quad \text{whereas}
\]

\[
\int_{-\infty}^{\infty} x^{m(\alpha)} e^{-iax} g(x) dx \neq 0 \quad \text{for some } g \in X. \]

If now \(\alpha \in E \) and

\[
d\mu(x) = (c_0 + c_1 x + \cdots + c_k x^k) e^{-iax} dx \quad (k < m(\alpha)),
\]

then (22) implies that

\[
\int_{-\infty}^{\infty} f(x) d\mu(x) = 0 \quad \text{for all } f \in X.
\]

To sum up, any finite linear combination of measures (24) and the measure \(x^{m(0)} dx \) acts invariantly on \(X \), and so do certain infinite sums. For instance, if \(\alpha_1, \alpha_2, \alpha_3, \cdots \) are points of \(E \) and if \(\{ c_j \} \) tends to 0 rapidly enough, the series

\[
s(x) = \sum_{j=1}^{\infty} c_j e^{-i\alpha_j x}
\]

converges uniformly on compact subsets of \(R \), and the measure \(d\mu(x) = s(x) dx \) acts invariantly on \(X \).

Both examples which follow Theorem 2 are of this sort. It is noteworthy that the complex zeros of the Fourier transforms play a role here.
We conclude with an example of a space $X \subset C_c(R)$ (a dense subspace of $C_c(R)$, by Theorem 3) which contains a nontrivial nonnegative function and on which a positive measure (not a Haar measure) acts invariantly: X consists of all $f\in C_c(R)$ with $f(1)=f(-1)=0$, and $d\mu(x) = (2+\sin x)dx$. Since $2i \sin x = e^{ix} - e^{-ix}$, $\int_{-\infty}^{\infty} f(x) \sin x \, dx = 0$ for all $f \in X$, and so μ acts invariantly on X; also, X contains the nonnegative triangular function f defined by

$$f(x) = \max (2\pi - |x|, 0) \quad (-\infty < x < \infty).$$

REFERENCES

PURDUE UNIVERSITY AND UNIVERSITY OF WISCONSIN

BARRELLED SPACES AND THE OPEN MAPPING THEOREM

TAQDIR HUSAIN AND MARK MAHOWALD

1. Introduction. If E and F are any two topological vector spaces then the following statement may or may not be true:

 (A) If f is any linear and continuous mapping of E onto F then f is open.

 It is well known [1] that (A) is true when E and F are Fréchet spaces. An extension due to Pták [6], and Robertson and Robertson [7] is that (A) is true if E is B-complete and F is barrelled (t-space). We ask here whether these results characterize Fréchet and B-complete spaces respectively. More precisely, let \mathcal{F} and \mathcal{S} denote the classes of all Fréchet and barrelled spaces respectively. We ask if a topological vector space E, having the property that (A) is true whenever $F \in \mathcal{F}(\mathcal{S})$, is necessarily a Fréchet (B-complete) space.

 A well-known example of an LF-space and a theorem of Dieudonné and Schwartz [5, Theorem 1] supplies a counterexample to the above for \mathcal{F}. Here, we give an example showing that the other case is also false.

 Presented to the Society, January 26, 1961, under the title $B(\mathcal{C})$-property and the open mapping theorem; received by the editors February 22, 1961 and, in revised form, April 21, 1961.

 This work was sponsored by the Office of Ordnance Research, U. S. Army.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use