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1. Introduction. Autocorrelation functions play a central role in

many engineering applications. The following operation describes a

certain optical system [2]: from a function/of two variables, repre-

senting the transparency of a photographic slide, another trans-

parency function F is produced on a photographic plate which is the

autocorrleation function of/; that is,

/OO       /» OOf(i,v)f(S-*,n-y)didn.
-00^-00

The essential feature of the function F is that it remains unchanged

if/is replaced by/* where /*(£, r¡) =/(£+«, n+ß). A uniqueness ques-

tion now arises; if/and g have the same autocorrelation function, are

they related by a rectilinear motion of the plane?

The answer to this question is negative as is shown in §4 by coun-

terexample. In §2 we present this problem in a more general setting

and in §3 the main theorem.

2. Notation and definitions. Let G be a locally compact abelian

group, p Haar measure, and Li,r(G) the space of real-valued /¿-integra-

ble functions on G. For each s EG define the translation operator

r,:Li,t(G)->Li,t(G) by (T,f)(x)=f(sx) and denote by £(/) the set
{ê- gELi,r(G), (T,f)(x)=g(x)(n a.e.) for some sEG] of translates

of/. A functional p(-) with domain Li¡r(G) will be called translation

invariant if p(f)=p(g) for all gEZ(f). A class of translation invariants

ty= {pü,(-): o)E&]  is complete if Pu,(/)=pu(g)  for all coGß implies

gei(f).
The kth order autocorrelation function of fELi¡r(G) is the real-

valued function Pk(f)=Pk(f)(xi, x2, • • • , x*) with domain G(i)

= GXGX • • ■ XG (k copies) defined formally by

Pk(f)(xi, x2,---,xk)= f f(&f(i*ùf(&) ■ ■ -fdxkhVQ.
J a

The proof that Pk(f) is /¿^'-almost everywhere1 defined and in Li,r(G)

is a modification of the argument of [l, p. 121] used in establishing

that the convolution of integrable functions is integrable. The map-
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1 /!<*' denotes the direct product measure on G(" given by u on G.
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ping/—>pi-(/) of 7i,r(G) into Li,r(G(i)) is a translation invariant func-

tional as p is Haar measure.

Let G denote the character group of G. For ÄG7,i,r(G<i;)) define

the "¿-dimensional" Fourier transform by

Kxi, ■•-,Xk)= f     fixteùHtu • • •. fe)/*(H(d£i X • • • X dfc)
Jo(»    i-1

where x«GG and ~~ denotes complex conjugation. For fELi r(G) let

<r(/)={x:xGG,/(x)^0}.
If 7v is a group and 77 a subset of K, we shall say that a mapping

<£, 0: 77—>C= {exp(2-7rix) : 0 ^x < 1} öc/5 homomorphically on H to C if

(i) 4>iarl) = [0(a)]-1 whenever a, a_1G77.

(ii) For each A, 0(HJLi o,-) = üüi <K°;) whenever ai, a2, • ■ ■ , an

and XIi^i a« are m H.

3. Main theorem.

Theorem. {p*(*): fe=l, 2, ■ • • } ¿5 a complete set of translation

invariants for ¿i,r(G).

Lemma 1. Lei H be a symmetric subset of a group K ii.e., if aEH then

c_1G77). If <p acts homomorphically on H to C then <p can be extended

to a homomorphism of the subgroup [77], generated by 77, to C.

Proof. For cE [77] define <£(c) =c£(ai)</>(a2) • • • <pia„) where

c = aiü2 • • ■ ap, a,EHii^i^p). To see that this definition of <£(c) is

consistent let us suppose c = bibi ■ ■ ■ bq with 2»,G77(1 ^i^q). Then

¿>, = Ö1&2 • • • apbr^bi~l ■ ■ ■ b~}x so that </>(63) = ^(01)0(02) • • •

<t>iap)<pibr')<Pibi-1) • ■ ■ 0(6,--i) by (n) above. By (i) Wr1) = [«(*.■) I"1
so that <p(bi)(p(b2) ■ ■ ■ <p(bq) =<p(ai)4>(ai) ■ ■ ■ <p(ap). The extended

mapping is easily seen to be a homomorphism of [77] into C.

Lemma 2. If K is a topological group, H an open symmetric subset

of K and <f> a continuous mapping <b: H-^C which acts homomorphically

on 77 to C, then (p can be extended to a continuous homomorphism of the

inecessarily closed) subgroup [77], generated by 77, to C.

Proof. By Lemma 1, <p can be extended to <p* an algebraic homo-

morphism of [77] to C. It suffices to verify that <j>* is continuous. Let

77n denote the set 77-77.77 (w copies);2 77„ is clearly an open

subset of K. Let (pn denote the restriction of <p* to 77„. Clearly <p„ is

continuous on 77n and since [77] = U"=1 77„, <j>* is continuous on [77].

As [77] is an open subgroup of K it follows that it is necessarily a

closed subgroup [3, p. 37].

2 Hn= {c: c = a¡ai • • ■ an, a¡ G H}.
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Proof of the theorem. If fELi,,(G) then

/(x-1)=/(x)

and hence a(f) is a symmetric subset of G. An elementary computation

using Fubini's theorem yields

(i) M (xi, xi, • • •. x») = /( ñ xr1) ñ Ax.)
\ 1=1       / ,=1

Suppose/, gELi,r(G) with

(2) Pk(f)=Pk(g), k=l,2,---.

From (2) with i=lwe obtain

(3) KxiKx-1) = I /(x) I2 = | g(x) |2 = tfxMx-1)

so that we may write

(4) g(x) = *(x)/(x)

where |#(x)| =1 for xEo(f). The reality of/and g and (4) implies

moreover

(5) -Kx-1) = *(x) = [¿(x)]-1

again for x£c(/)- Equations (1), (2), (4) and (5) yield

(6) 4 n xi) = n «(xa\ i=i /  ¿=i
whenever

Xu Xi, • • • , XN, II X< G <r(/)-
í=i

Since/(•) is continuous and does not vanish on a(f), <p(-) is continu-

ous on a(f) and <r(f) is open. Thus <p is continuous and acts homo-

morphically on the open symmetric subset <r(/) to C. By Lemma 2,

(p can be extended to a continuous homomorphism of [cr(f) ] to C. The

mapping 0: [a(f)]—*C can be extended [4, p. 138] to a character of

G. Thus we have

(7) g(x) = <P(x)Kx)

for all x£G, with 0 a character of G. By the duality theorem [l,

p. 151]

(8) *(x) = X(a)

for some fixed aEG and therefore the uniqueness theorem [l, p. 146]

finally yields

(°) g(x) =f(ax) (p a.e.).
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4. Counterexamples. We will now exhibit a counterexample to the

conjecture

pdf) = piig)=>gezif).
Let G be the real line and A a subset of G of finite positive measure

which is not a translate of its inverse set. If / and g are the character-

istic functions of A and — ̂ 4 = { — x: xG-<4 } respectively then

Mix) =piAC\iA -x)) =pi-AC\i-A -x)) =pi(g)(x) whilegGÎ(/)-
Similarly the conjecture

Pdf) =Pdg)=*gEXif)r\xif-)

where/~(x) =/(x_1) is also false. To show this let A and B be subsets

of the real line as described above and / and g the characteristic

functions of A XB and iX(- B). Then / and g have the same

(first order) autocorrelation function while gEXif)^JXif").

It is likewise conjectured by the authors that no finite subset of

{pid-): k= 1, 2, ■ • • } is a complete set of translation invariants un-

less restrictions are placed upon the functions. In this connection the

following corollary is easily obtained.

Corollary. If U, is the subset of 7i,r(G) consisting of those f for

which <r(/)-(r(/).aif)   iv   copies)   is   a subgroup   of   G   then

{pid-): k = l, 2, ■ • • , 3v— 1} is a complete set of translation invariants

for 11,. In particular if fix) ^0 (xGG) and pdf) =pdg) (*= 1, 2) then

gEZif)-

5. Further considerations. For complex-valued /¿-integrable func-

tions <r(/) is no longer symmetric in general and our argument fails.

In fact if G is the unit interval and /G7i(G) with

r1 ( n < 0,
/(Öexp(-2xinf)a{ = 0^ A7

J o v n > N

then pkif)=0 for all k. Minor modifications of the definition of the

autocorrelation function do not substantially change the situation.
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