A NOTE ON TRANSLATION INVARIANTS

ROY L. ADLER AND ALAN G. KONHEIM

1. Introduction. Autocorrelation functions play a central role in many engineering applications. The following operation describes a certain optical system [2]: from a function f of two variables, representing the transparency of a photographic slide, another transparency function F is produced on a photographic plate which is the autocorrleation function of f; that is,

$$
F(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \eta) f(\xi-x, \eta-y) d \xi d \eta .
$$

The essential feature of the function F is that it remains unchanged if f is replaced by f^{*} where $f^{*}(\xi, \eta)=f(\xi+\alpha, \eta+\beta)$. A uniqueness question now arises; if f and g have the same autocorrelation function, are they related by a rectilinear motion of the plane?

The answer to this question is negative as is shown in $\S 4$ by counterexample. In §2 we present this problem in a more general setting and in §3 the main theorem.
2. Notation and definitions. Let G be a locally compact abelian group, μ Haar measure, and $L_{1, r}(G)$ the space of real-valued μ-integrable functions on G. For each $s \in G$ define the translation operator $T_{a}: L_{1, r}(G) \rightarrow L_{1, r}(G)$ by $\left(T_{s} f\right)(x)=f(s x)$ and denote by $\mathfrak{T}(f)$ the set $\left\{g: g \in L_{1, r}(G),\left(T_{s} f\right)(x)=g(x)(\mu\right.$ a.e. $)$ for some $\left.s \in G\right\}$ of translates of f. A functional $\rho(\cdot)$ with domain $L_{1, r}(G)$ will be called translation invariant if $\rho(f)=\rho(g)$ for all $g \in \mathfrak{T}(f)$. A class of translation invariants $\mathfrak{P}=\left\{\rho_{\omega}(\cdot): \omega \in \Omega\right\}$ is complete if $\rho_{\omega}(f)=\rho_{\omega}(g)$ for all $\omega \in \Omega$ implies $g \in \mathfrak{T}(f)$.

The kth order autocorrelation function of $f \in L_{1, r}(G)$ is the realvalued function $\rho_{k}(f) \equiv \rho_{k}(f)\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ with domain $G^{(k)}$ $=G \times G \times \cdots \times G$ (k copies) defined formally by

$$
\rho_{k}(f)\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\int_{G} f(\xi) f\left(\xi x_{1}\right) f\left(\xi x_{2}\right) \cdots f\left(\xi x_{k}\right) \mu(d \xi) .
$$

The proof that $\rho_{k}(f)$ is $\mu^{(k)}$-almost everywhere ${ }^{1}$ defined and in $L_{1, r}(G)$ is a modification of the argument of [1, p. 121] used in establishing that the convolution of integrable functions is integrable. The map-

[^0]ping $f \rightarrow \rho_{k}(f)$ of $L_{1, r}(G)$ into $L_{1, r}\left(G^{(k)}\right)$ is a translation invariant functional as μ is Haar measure.

Let \hat{G} denote the character group of G. For $h \in L_{1, r}\left(G^{(k)}\right)$ define the " k-dimensional" Fourier transform by

$$
\hat{h}\left(\chi_{1}, \cdots, \chi_{k}\right)=\int_{G^{(k)}} \prod_{i=1}^{k} \overline{\chi_{i}}\left(\xi_{i}\right) h\left(\xi_{1}, \cdots, \xi_{k}\right) \mu^{(k)}\left(d \xi_{1} \times \cdots \times d \xi_{k}\right)
$$

where $\chi_{i} \in \hat{G}$ and - denotes complex conjugation. For $f \in L_{1, r}(G)$ let $\sigma(f)=\{\chi: \chi \in \hat{G}, \hat{f}(\chi) \neq 0\}$.

If K is a group and H a subset of K, we shall say that a mapping $\phi, \phi: H \rightarrow C=\{\exp (2 \pi i x): 0 \leqq x<1\}$ acts homomorphically on H to C if
(i) $\phi\left(a^{-1}\right)=[\phi(a)]^{-1}$ whenever $a, a^{-1} \in H$.
(ii) For each $N, \phi\left(\prod_{i=1}^{N} a_{i}\right)=\prod_{i=1}^{N} \phi\left(a_{i}\right)$ whenever $a_{1}, a_{2}, \cdots, a_{N}$ and $\prod_{i=1}^{N} a_{i}$ are in H.
3. Main theorem.

Theorem. $\left\{\rho_{k}(\cdot): k=1,2, \cdots\right\}$ is a complete set of translation invariants for $L_{1, r}(G)$.

Lemma 1. Let H be a symmetric subset of a group K (i.e., if $a \in H$ then $\left.a^{-1} \in H\right)$. If ϕ acts homomorphically on H to C then ϕ can be extended to a homomorphism of the subgroup [H], generated by H, to C.

Proof. For $c \in[H]$ define $\phi(c)=\phi\left(a_{1}\right) \phi\left(a_{2}\right) \cdots \phi\left(a_{p}\right)$ where $c=a_{1} a_{2} \cdots a_{p}, a_{i} \in H(1 \leqq i \leqq p)$. To see that this definition of $\phi(c)$ is consistent let us suppose $c=b_{1} b_{2} \cdots b_{q}$ with $b_{i} \in H(1 \leqq i \leqq q)$. Then $b_{q}=a_{1} a_{2} \cdots a_{p} b_{1}^{-1} b_{2}^{-1} \cdots b_{q-1}^{-1} \quad$ so that $\quad \phi\left(b_{q}\right)=\phi\left(a_{1}\right) \phi\left(a_{2}\right) \cdots$ $\phi\left(a_{p}\right) \phi\left(b_{1}^{-1}\right) \phi\left(b_{2}^{-1}\right) \cdots \phi\left(b_{q-1}^{-1}\right)$ by (ii) above. By (i) $\phi\left(b_{i}^{-1}\right)=\left[\phi\left(b_{i}\right)\right]^{-1}$ so that $\phi\left(b_{1}\right) \phi\left(b_{2}\right) \cdots \phi\left(b_{q}\right)=\phi\left(a_{1}\right) \phi\left(a_{2}\right) \cdots \phi\left(a_{p}\right)$. The extended mapping is easily seen to be a homomorphism of $[H]$ into C.

Lemma 2. If K is a topological group, H an open symmetric subset of K and ϕ a continuous mapping $\phi: H \rightarrow C$ which acts homomorphically on H to C, then ϕ can be extended to a continuous homomorphism of the (necessarily closed) subgroup $[H]$, generated by H, to C.

Proof. By Lemma 1, ϕ can be extended to ϕ^{*} an algebraic homomorphism of $[H]$ to C. It suffices to verify that ϕ^{*} is continuous. Let H_{n} denote the set $H \cdot H \cdot \cdots \cdot H$ (n copies) $;{ }^{2} H_{n}$ is clearly an open subset of K. Let ϕ_{n} denote the restriction of ϕ^{*} to H_{n}. Clearly ϕ_{n} is continuous on H_{n} and since $[H]=\mathrm{U}_{n=1}^{\infty} H_{n}, \phi^{*}$ is continuous on $[H]$. As [H] is an open subgroup of K it follows that it is necessarily a closed subgroup [3, p. 37].

[^1]Proof of the theorem. If $f \in L_{1, r}(G)$ then

$$
\hat{f}\left(\chi^{-1}\right)=\overline{\hat{f}(\chi)}
$$

and hence $\sigma(f)$ is a symmetric subset of \hat{G}. An elementary computation using Fubini's theorem yields

$$
\begin{equation*}
\hat{\rho}_{k}(f)\left(\chi_{1}, \chi_{2}, \cdots, \chi_{k}\right)=\hat{f}\left(\prod_{i=1}^{k} \chi_{i}^{\bar{i}^{-1}}\right) \prod_{i=1}^{k} \hat{f}\left(\chi_{i}\right) \tag{1}
\end{equation*}
$$

Suppose $f, g \in L_{1, r}(G)$ with

$$
\begin{equation*}
\rho_{k}(f)=\rho_{k}(g), \quad k=1,2, \cdots \tag{2}
\end{equation*}
$$

From (2) with $k=1$ we obtain

$$
\begin{equation*}
\hat{f}(x) \hat{f}\left(x^{-1}\right)=|\hat{f}(x)|^{2}=|\hat{g}(x)|^{2}=\hat{g}(x) \hat{g}\left(\chi^{-1}\right) \tag{3}
\end{equation*}
$$

so that we may write

$$
\begin{equation*}
\hat{g}(\chi)=\phi(\chi) f(x) \tag{4}
\end{equation*}
$$

where $|\phi(\chi)|=1$ for $\chi \in \sigma(f)$. The reality of f and g and (4) implies moreover

$$
\begin{equation*}
\phi\left(\chi^{-1}\right)=\overline{\phi(x)}=[\phi(x)]^{-1} \tag{5}
\end{equation*}
$$

again for $\chi \in \sigma(f)$. Equations (1), (2), (4) and (5) yield

$$
\begin{equation*}
\phi\left(\prod_{i=1}^{N} x_{i}\right)=\prod_{i=1}^{N} \phi\left(x_{i}\right) \tag{6}
\end{equation*}
$$

whenever

$$
\chi_{1}, \chi_{2}, \cdots, \chi_{N}, \prod_{i=1}^{N} \chi_{i} \in \sigma(f)
$$

Since $\hat{j}(\cdot)$ is continuous and does not vanish on $\sigma(f), \phi(\cdot)$ is continuous on $\sigma(f)$ and $\sigma(f)$ is open. Thus ϕ is continuous and acts homomorphically on the open symmetric subset $\sigma(f)$ to C. By Lemma 2, ϕ can be extended to a continuous homomorphism of $[\sigma(f)]$ to C. The mapping $\phi:[\sigma(f)] \rightarrow C$ can be extended $[4, \mathrm{p} .138]$ to a character of \hat{G}. Thus we have

$$
\begin{equation*}
\hat{g}(\chi)=\phi(x) \hat{f}(\chi) \tag{7}
\end{equation*}
$$

for all $\chi \in \hat{G}$, with ϕ a character of \hat{G}. By the duality theorem [1, p. 151]

$$
\begin{equation*}
\phi(\chi)=\chi(a) \tag{8}
\end{equation*}
$$

for some fixed $a \in G$ and therefore the uniqueness theorem [1, p. 146] finally yields

$$
\begin{equation*}
g(x)=f(a x) \text { (} \mu \text { a.e.). } \tag{9}
\end{equation*}
$$

4. Counterexamples. We will now exhibit a counterexample to the conjecture

$$
\rho_{1}(f)=\rho_{1}(g) \Rightarrow g \in \mathfrak{T}(f)
$$

Let G be the real line and A a subset of G of finite positive measure which is not a translate of its inverse set. If f and g are the characteristic functions of A and $-A=\{-x: x \in A\}$ respectively then $\rho_{1}(f)(x)=\mu(A \cap(A-x))=\mu(-A \cap(-A-x))=\rho_{1}(g)(x)$ while $g \notin \mathfrak{I}(f)$. Similarly the conjecture

$$
\rho_{1}(f)=\rho_{1}(g) \Rightarrow g \in \mathfrak{I}(f) \cap \mathfrak{T}\left(f^{-}\right)
$$

where $f^{-}(x)=f\left(x^{-1}\right)$ is also false. To show this let A and B be subsets of the real line as described above and f and g the characteristic functions of $A \times B$ and $A \times(-B)$. Then f and g have the same (first order) autocorrelation function while $g \notin \mathfrak{T}(f) \cup \mathfrak{T}\left(f^{-}\right)$.

It is likewise conjectured by the authors that no finite subset of $\left\{\rho_{k}(\cdot): k=1,2, \cdots\right\}$ is a complete set of translation invariants unless restrictions are placed upon the functions. In this connection the following corollary is easily obtained.

Corollary. If \mathfrak{U}, is the subset of $L_{1, r}(G)$ consisting of those for which $\sigma(f) \cdot \sigma(f) \cdot \cdots \cdot \sigma(f)$ (ν copies) is a subgroup of \hat{G} then $\left\{\rho_{k}(\cdot): k=1,2, \cdots, 3 \nu-1\right\}$ is a complete set of translation invariants for $\mathfrak{U}_{\text {. }}$. In particular if $\hat{f}(\chi) \neq 0(\chi \in \hat{G})$ and $\rho_{i}(f)=\rho_{i}(g)(i=1,2)$ then $g \in \mathfrak{T}(f)$.
5. Further considerations. For complex-valued μ-integrable functions $\sigma(f)$ is no longer symmetric in general and our argument fails. In fact if G is the unit interval and $f \in L_{1}(G)$ with

$$
\int_{0}^{1} f(\xi) \exp (-2 \pi i n \xi) d \xi=0\left\{\begin{array}{l}
n<0 \\
n>N
\end{array}\right.
$$

then $\rho_{k}(f) \equiv 0$ for all k. Minor modifications of the definition of the autocorrelation function do not substantially change the situation.

References

1. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York, 1953.
2. W. Meyer-Eppler and G. Darius, Two-dimensional photographic autocorrelation of pictures and alphabet letters, Proc. 3rd London Sympos. Information Theory, pp. 34-36.
3. D. Montgomery and L. Zippen, Topological transformation groups, Interscience, New York, 1955.
4. L. Pontrjagin, Topological groups, Princeton Univ. Press, Princeton, N. J., 1946.
ibM Research Center, Yorktown Heights, New York

[^0]: Presented to the Society, January 23, 1961; received by the editors December 10, 1960 and, in revised form, March 20, 1961.
 ${ }^{1} \mu^{(k)}$ denotes the direct product measure on $G^{(k)}$ given by μ on G.

[^1]: ${ }^{2} H_{n}=\left\{c: c=a_{1} a_{2} \cdots a_{n}, a_{i} \in H\right\}$.

